Article

Proteomic analysis of endocytic vesicles: Rab1a regulates motility of early endocytic vesicles.

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Journal of Cell Science (Impact Factor: 5.33). 03/2011; 124(Pt 5):765-75. DOI: 10.1242/jcs.079020
Source: PubMed

ABSTRACT Texas-Red-asialoorosomucoid (ASOR) fluorescence-sorted early and late endocytic vesicles from rat liver were subjected to proteomic analysis with the aim of identifying functionally important proteins. Several Rab GTPases, including Rab1a, were found. The present study immunolocalized Rab1a to early and late endocytic vesicles and examined its potential role in endocytosis. Huh7 cells with stable knockdown of Rab1a exhibited reduced endocytic processing of ASOR. This correlated with the finding that Rab1a antibody reduced microtubule-based motility of rat-liver-derived early but not late endocytic vesicles in vitro. The inhibitory effect of Rab1a antibody was observed to be specifically towards minus-end-directed motility. Total and minus-end-directed motility was also reduced in early endocytic vesicles prepared from Rab1a-knockdown cells. These results corresponded with virtual absence of the minus-end-directed kinesin Kifc1 from early endocytic vesicles in Rab1a knockdown cells and imply that Rab1a regulates minus-end-directed motility largely by recruiting Kifc1 to early endocytic vesicles.

0 Followers
 · 
128 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vaccinia virus (VACV) is a large double-stranded DNA virus with a complex cytoplasmic replication cycle that exploits numerous cellular proteins. This work characterises the role of a proviral cellular protein, the small GTPase RAB1A, in VACV replication. Using siRNA, we identified RAB1A as required for the production of extracellular enveloped virions (EEVs), but not intracellular mature virions (IMVs). Immunofluorescence and electron microscopy further refined the role of RAB1A as facilitating the wrapping of IMVs to become intracellular enveloped virions (IEVs). This is consistent with the known function of RAB1A in maintenance of ER to Golgi transport. VACV can therefore be added to the growing list of viruses which require RAB1A for optimal replication, highlighting this protein as a broadly proviral host factor. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Virology 11/2014; 475C:66-73. DOI:10.1016/j.virol.2014.11.007 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanosomes are lysosome-related organelles in melanocytes that are transported from the perinucleus to the cell periphery by coordination between bidirectional (anterograde and retrograde) microtubule-dependent transport and unidirectional actin-dependent transport. Although the molecular machineries that mediate retrograde transport and actin-dependent transport have already been identified, little is known about the anterograde transport complex on microtubules in mammalian cells. Here we discovered that small GTPase Rab1A on melanosomes recruits SKIP/PLEKHM2 as a Rab1A-specific effector and that Rab1A, SKIP, and a kinesin-1/(Kif5b+KLC2) motor form a transport complex that mediates anterograde melanosome transport in melanocytes. Interestingly, Arl8, Arf-like small GTPase that also interacts with SKIP, is specifically localized at lysosomes and regulates their anterograde transport in melanocytes. Our findings suggest that the anterograde microtubule-dependent transport of melanosomes and lysosomes are differently regulated by independent cargo receptors, i.e., Rab1A and Arl8, respectively, but that a SKIP-kinesin-1 mechanism is responsible for the transport of both.
    Scientific Reports 02/2015; 5:8238. DOI:10.1038/srep08238 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vesicle traffic involves budding, transport, tethering and fusion of vesicles with acceptor membranes. GTP-bound small Rab GTPases interact with the membrane of vesicles, promoting their association with other factors before their subsequent fusion. Filamentous fungi contain at their hyphal apex the Spitzenkörper (Spk), a multi-vesicular structure to which vesicles concentrate before being redirected to specific cell sites. The regulatory mechanisms ensuring the directionality of the vesicles that travel to the Spk are still unknown. Hence, we analyzed YPT-1, the Neurospora crassa homologue of Saccharomyces cerevisiae Ypt1p (Rab1), which regulates different secretory pathway events. Laser scanning confocal microscopy revealed fluorescently tagged YPT-1 at the Spk and putative Golgi cisternae. Co-expression of YPT-1 and predicted post-Golgi Rab GTPases showed YPT-1 confined to the Spk microvesicular core, while SEC-4 (Rab8) and YPT-31 (Rab11) occupied the Spk macrovesicular peripheral layer, suggesting that trafficking and organization of macro and microvesicles at the Spk is regulated by distinct Rabs. Partial co-localization of YPT-1 with USO-1 (p115) and SEC-7, indicated the additional participation of YPT-1 at early and late Golgi trafficking steps. This article is protected by copyright. All rights reserved.
    Molecular Microbiology 11/2014; 95(3). DOI:10.1111/mmi.12878 · 5.03 Impact Factor