Article

Plasma proteomic alterations in non-human primates and humans after chronic alcohol self-administration

Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA.
The International Journal of Neuropsychopharmacology (Impact Factor: 5.26). 02/2011; 14(7):899-911. DOI: 10.1017/S1461145711000046
Source: PubMed

ABSTRACT Objective diagnostics of excessive alcohol use are valuable tools in the identification and monitoring of subjects with alcohol use disorders. A number of potential biomarkers of alcohol intake have been proposed, but none have reached widespread clinical usage, often due to limited diagnostic sensitivity and specificity. In order to identify novel potential biomarkers, we performed proteomic biomarker target discovery in plasma samples from non-human primates that chronically self-administer high levels of ethanol. Two-dimensional difference in-gel electrophoresis (2D-DIGE) was used to quantify plasma proteins from within-subject samples collected before exposure to ethanol and after 3 months of excessive ethanol self-administration. Highly abundant plasma proteins were depleted from plasma samples to increase proteomic coverage. Altered plasma levels of serum amyloid A4 (SAA4), retinol-binding protein, inter-alpha inhibitor H4, clusterin, and fibronectin, identified by 2D-DIGE analysis, were confirmed in unmanipulated, whole plasma from these animals by immunoblotting. Examination of these target plasma proteins in human subjects with excessive alcohol consumption (and control subjects) revealed increased levels of SAA4 and clusterin and decreased levels of fibronectin compared to controls. These proteins not only serve as targets for further development as biomarker candidates or components of biomarker panels, but also add to the growing understanding of dysregulated immune function and lipoprotein metabolism with chronic, excessive alcohol consumption.

2 Followers
 · 
103 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders.
    Methods 04/2013; DOI:10.1016/j.ymeth.2013.04.008 · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An estimated 18 million adults in the United States meet the clinical criteria for diagnosis of alcohol abuse or alcoholism, a disorder ranked as the third leading cause of preventable death. In addition to brain pathology, heavy alcohol consumption is comorbid with damage to major organs including heart, lungs, liver, pancreas, and kidneys. Much of what is known about risk for and consequences of heavy consumption derive from rodent or retrospective human studies. The neurobiological effects of chronic intake in rodent studies may not easily translate to humans due to key differences in brain structure and organization between species, including a lack of higher-order cognitive functions, and differences in underlying prefrontal cortical neural structures that characterize the primate brain. Further, rodents do not voluntarily consume large quantities of ethanol (EtOH) and they metabolize it more rapidly than primates.
    Alcoholism Clinical and Experimental Research 06/2014; 38(7). DOI:10.1111/acer.12467 · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol abuse can lead to a number of health and social issues. Our current inability to accurately assess long-term drinking behaviors is an important obstacle to its diagnosis and treatment. Biomarkers for chronic alcohol consumption have made a number of important advances but have yet to become highly accurate and as accepted as objective tests for other diseases. Thus, there is a crucial need for the development of more sensitive and specific markers of alcohol abuse. Recent advancements in proteomic technologies have greatly increased the potential for alcohol abuse biomarker discovery. Here, the authors review established and novel protein biomarkers for long-term alcohol consumption and the proteomic technologies that have been used in their study.
    Expert Review of Proteomics 08/2012; 9(4):425-36. DOI:10.1586/epr.12.38 · 3.54 Impact Factor

Full-text (2 Sources)

Download
58 Downloads
Available from
May 19, 2014