Three-dimensional tracking of cardiac catheters using an inverse geometry x-ray fluoroscopy system

Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA.
Medical Physics (Impact Factor: 2.64). 12/2010; 37(12):6377-89. DOI: 10.1118/1.3515463
Source: PubMed


Scanning beam digital x-ray (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis at multiple planes. This study describes a tomosynthesis-based method for 3D tracking of high-contrast objects and present the first experimental investigation of cardiac catheter tracking using a prototype SBDX system.
The 3D tracking algorithm utilizes the stack of regularly spaced tomosynthetic planes that are generated by SBDX after each frame period (15 frames/s). Gradient-filtered versions of the image planes are generated, the filtered images are segmented into object regions, and then a 3D coordinate is calculated for each object region. Two phantom studies of tracking performance were conducted. In the first study, an ablation catheter in a chest phantom was imaged as it was pulled along a 3D trajectory defined by a catheter sheath (10, 25, and 50 mm/s pullback speeds). SBDX tip tracking coordinates were compared to the 3D trajectory of the sheath as determined from a CT scan of the phantom after the registration of the SBDX and CT coordinate systems. In the second study, frame-to-frame tracking precision was measured for six different catheter configurations as a function of image noise level (662-7625 photons/mm2 mean detected x-ray fluence at isocenter).
During catheter pullbacks, the 3D distance between the tracked catheter tip and the sheath centerline was 1.0 +/- 0.8 mm (mean +/- one standard deviation). The electrode to centerline distances were comparable to the diameter of the catheter tip (2.3 mm), the confining sheath (4 mm outside diameter), and the estimated SBDX-to-CT registration error (+/- 0.7 mm). The tip position was localized for all 332 image frames analyzed and 83% of tracked positions were inside the 3D sheath volume derived from CT. The pullback speeds derived from the catheter trajectories were within 5% of the programed pullback speeds. The tracking precision of ablation and diagnostic catheter tips ranged from +/- 0.2 mm at the highest image fluence to +/- 0.9 mm at the lowest fluence. Tracking precision depended on image fluence, the size of the tracked catheter electrode, and the contrast of the electrode.
High speed multiplanar tomosynthesis with an inverse geometry x-ray fluoroscopy system enables 3D tracking of multiple high-contrast objects at the rate of fluoroscopic imaging. The SBDX system is capable of tracking electrodes in standard cardiac catheters with approximately 1 mm accuracy and precision.

1 Follower
10 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantitative coronary angiography (QCA) can be used to support device size selection for cardiovascular interventions. The accuracy of QCA measurements using conventional x-ray fluoroscopy depends on proper calibration using a reference object and avoiding vessel foreshortening. The authors have developed a novel interventional device sizing method using the inverse geometry scanning-beam digital x-ray (SBDX) fluoroscopy system. The proposed method can measure the diameter and length of vessel segments without imaging a reference object and when vessels appear foreshortened. SBDX creates multiple tomosynthetic x-ray images corresponding to planes through the patient volume. The structures that lie in the plane are in focus and the features above and below the plane are blurred. Three-dimensional localization of the vessel edges was performed by examining the degree of blurring at each image plane. A 3D vessel centerline was created and used to determine vessel magnification and angulation relative to the image planes. Diameter measurements were performed using a model-based method and length measurements were calculated from the 3D centerline. Phantom validation was performed by measuring the diameter and length of vessel segments with nominal diameters ranging from 0.5 to 2.8 mm and nominal lengths of 42 mm. The phantoms were imaged at a range of positions between the source and the detector (+/- 16 cm relative to isocenter) and with a range of foreshortening angles (0 degrees-75 degrees). Changes in vessel phantom position created magnifications ranging from 87% to 118% relative to isocenter magnification. Average diameter errors were less than 0.15 mm. Average length measurements were within 1% (0.3 mm) of the true length. No trends were observed between measurement accuracy and magnification. Changes in vessel phantom orientation resulted in decreased apparent length down to 28% of the original nonforeshortened length. Average diameter errors were less than 0.25 mm across all vessel angulations; errors were less than 0.1 mm for smaller diameter vessels and low to moderate vessel angles. Diameter errors increased with true diameter and vessel angle relative to the image plane. Average length measurement errors were also within 1% (0.3 mm) for each angulation. Tomosynthetic imaging with SBDX can accurately measure dimensions of vessels in various magnifications and angulations without calibration. This method may be more accurate and convenient than conventional QCA techniques.
    Medical Physics 01/2011; 38(1):283-93. DOI:10.1118/1.3528227 · 2.64 Impact Factor
  • Source

    Journal of the American College of Radiology: JACR 01/2011; 8(1):74-7. DOI:10.1016/j.jacr.2010.11.002 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In external-beam radiation therapy, existing on-board x-ray imaging chains orthogonal to the delivery beam cannot recover 3D target trajectories from a single view in real-time. This limits their utility for real-time motion management concurrent with beam delivery. To address this limitation, the authors propose a novel concept for on-board imaging based on the inverse-geometry Scanning-Beam Digital X-ray (SBDX) system and evaluate its feasibility for single-view 3D intradelivery fiducial tracking. A chest phantom comprising a posterior wall, a central lung volume, and an anterior wall was constructed. Two fiducials were placed along the mediastinal ridge between the lung cavities: a 1.5 mm diameter steel sphere superiorly and a gold cylinder (2.6 mm length × 0.9 mm diameter) inferiorly. The phantom was placed on a linear motion stage that moved sinusoidally. Fiducial motion was along the source-detector (z) axis of the SBDX system with ±10 mm amplitude and a programmed period of either 3.5 s or 5 s. The SBDX system was operated at 15 frames per second, 100 kVp, providing good apparent conspicuity of the fiducials. With the stage moving, detector data were acquired and subsequently reconstructed into 15 planes with a 12 mm plane-to-plane spacing using digital tomosynthesis. A tracking algorithm was applied to the image planes for each temporal frame to determine the position of each fiducial in (x,y,z)-space versus time. A 3D time-sinusoidal motion model was fit to the measured 3D coordinates and root mean square (RMS) deviations about the fitted trajectory were calculated. Tracked motion was sinusoidal and primarily along the source-detector (z) axis. The RMS deviation of the tracked z-coordinate ranged from 0.53 to 0.71 mm. The motion amplitude derived from the model fit agreed with the programmed amplitude to within 0.28 mm for the steel sphere and within -0.77 mm for the gold seed. The model fit periods agreed with the programmed periods to within 7%. Three dimensional fiducial tracking with approximately 1 mm or better accuracy and precision appears to be feasible with SBDX, supporting its use to guide radiotherapy.
    Medical Physics 04/2012; 39(4):2163-9. DOI:10.1118/1.3697529 · 2.64 Impact Factor
Show more


10 Reads
Available from