Intensity of deoxycytidine deamination of HIV-1 proviral DNA by the retroviral restriction factor APOBEC3G is mediated by the noncatalytic domain

Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
Journal of Biological Chemistry (Impact Factor: 4.57). 02/2011; 286(13):11415-26. DOI: 10.1074/jbc.M110.199604
Source: PubMed

ABSTRACT APOBEC3G is a single-stranded (ss) DNA deaminase that restricts replication of HIV-1 by inducing viral genome mutagenesis through deamination of cytosine to uracil on HIV-1 cDNA. APOBEC3G has polydisperse oligomeric states and deaminates ssDNA processively through jumping and sliding. APOBEC3G has a catalytically inactive N-terminal CD1 domain that mediates processivity and an active C-terminal CD2 domain that catalyzes deaminations. Here, we assess the determinants of APOBEC3G deamination efficiency mediated by the CD1 domain by comparing native APOBEC3G and two CD1 mutants, a monomeric mutant (F126A/W127A) and a clinical mutant associated with high viral loads (H186R). Biochemical assays on ssDNA or partially dsDNA and with a reconstituted HIV replication system demonstrate that both mutants of Apo3G have altered DNA scanning properties in either jumping (F126A/W127A) or sliding (H186R), which results in decreased abilities to induce mutagenesis during reverse transcription. The data reveal a functionality for Apo3G oligomers in deamination and provide the first biochemical characterization of the clinical mutant H186R. The data demonstrate that the balance between the jumping and sliding of Apo3G is needed for efficient mutational inactivation of HIV-1.

Download full-text


Available from: Linda Chelico, Sep 19, 2014
  • Source
    • " August 2014 | Volume 5 | Article 450 | 15 movements (Feng and Chelico, 2011 "
    [Show abstract] [Hide abstract]
    ABSTRACT: The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-)DNA, APOBEC3 enzymes deaminate cytosines to form uracils in single-stranded (-)DNA regions. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite to the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but also by several degradation-independent mechanisms, such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective.
    Frontiers in Microbiology 08/2014; 5:450. DOI:10.3389/fmicb.2014.00450 · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: APOBEC3G (A3G) is a cytidine deaminase that catalyzes deamination of deoxycytidine (dC) on single-stranded DNA (ssDNA). The oligomeric state of A3G required to support deaminase activity remains unknown. We show under defined in vitro conditions that full-length and native A3G formed complexes with ssDNA in an A3G concentration-dependent but temperature-independent manner. Complexes assembled and maintained at 4 °C did not have significant deaminase activity, but their enzymatic function could be restored by subsequent incubation at 37 °C. This approach enabled complexes of a defined size range to be isolated and subsequently evaluated for their contribution to enzymatic activity. The composition of A3G bound to ssDNA was determined by protein-protein chemical cross-linking. A3G-ssDNA complexes of 16 S were necessary for deaminase activity and consisted of cross-linked A3G homotetramers and homodimers. At lower concentrations, A3G only formed 5.8 S homodimers on ssDNA with low deaminase activity. Monomeric A3G was not identified in 5.8 S or 16 S complexes. We propose that deaminase-dependent antiviral activity of A3G in vivo may require a critical concentration of A3G in viral particles that will promote oligomerization on ssDNA during reverse transcription.
    Journal of Biological Chemistry 07/2011; 286(35):30655-61. DOI:10.1074/jbc.M111.269506 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The APOBEC3 proteins are cytidine deaminases that can introduce G→A mutations in the HIV-1 plus DNA strand. This editing process may inhibit virus replication through lethal mutagenesis (hypermutation), but could also contribute to viral diversification leading to the emergence of escape forms. The HIV-1 Vif protein has the capacity to counteract APOBEC3 factors by recruiting a CUL5-based ubiquitin ligase complex that determines their proteasomal degradation. In this work, we analyzed the APOBEC3-mediated editing in proviral HIV-1 from perinatally infected children (n=93) in order to explore its association with polymorphisms of APOBEC3G and CUL5 genes (APOBEC3G H186R, APOBEC3G C40693T, and CUL5 SNP6), the Vif protein variability, and also the time to AIDS development. To calculate the level of editing, we have developed an index exploiting the properties of a region within the HIV-1 pol gene that includes the central polypurine tract (cPPT). We detected a reduced editing associated with the CUL5 SNP6 minor allele and also with certain Vif variants (mutations at sites 46, 122, and 160), although we found no evidence supporting an impact of APOBEC3 activity on disease progression. Thus, our findings suggest that APOBEC3-mediated editing of HIV-1 could be modulated by host and virus genetic characteristics in the context of pediatric infection.
    AIDS research and human retroviruses 12/2011; 28(6):619-27. DOI:10.1089/AID.2011.0291 · 2.46 Impact Factor
Show more