A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma.

Center for Neuro-Oncology, Dana Farber/Brigham and Women's Cancer Center, Shields Warren 430 D, Boston, MA 02115, USA.
Neuro-Oncology (Impact Factor: 6.18). 02/2011; 13(4):437-46. DOI: 10.1093/neuonc/noq198
Source: PubMed

ABSTRACT This phase II study evaluated the efficacy and safety of AMG 102 (rilotumumab), a fully human monoclonal antibody against hepatocyte growth factor/scatter factor (HGF/SF), in patients with recurrent glioblastoma (GBM). Patients with histologically confirmed, measurable recurrent GBM or gliosarcoma (World Health Organization grade 4) and ≤3 relapses or prior systemic therapies received AMG 102 (10 or 20 mg/kg) by infusion every 2 weeks. The primary endpoint was best confirmed objective response rate (central assessment) per Macdonald criteria. Of the 61 patients who enrolled, 60 received AMG 102. Twenty-nine patients (48%) had previously received bevacizumab. There were no objective responses per central assessment, but 1 patient had an objective response per investigator assessment. Median overall survival (95% CI) in the 10- and 20-mg/kg cohorts was 6.5 months (4.1-9.8) and 5.4 months (3.4-11.4), respectively, and progression-free survival (PFS) per central assessment was 4.1 weeks (4.0-4.1) and 4.3 weeks (4.1-8.1), respectively. PFS was similar among patients who had previously received bevacizumab compared with bevacizumab-naive patients. The most common adverse events were fatigue (38%), headache (33%), and peripheral edema (23%). AMG 102 serum concentrations increased approximately dose-proportionally with 2-fold accumulation at steady state. Plasma total HGF/SF and soluble c-Met concentrations increased 12.05- and 1.12-fold, respectively, from baseline during AMG 102 treatment. AMG 102 monotherapy at doses up to 20 mg/kg was not associated with significant antitumor activity in heavily pretreated patients with recurrent GBM.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The grafting of human tumor cells into the brain of immunosuppressed mice is an established method for the study of brain cancers including glioblastoma (glioma) and medulloblastoma. The widely used stereotactic approach only allows for the injection of a single animal at a time, is labor intensive and requires highly specialized equipment. The guide screw method, initially developed by Lal et al.,(1) was developed to eliminate cumbersome stereotactic procedures. We now describe a modified guide screw approach that is rapid and exceptionally safe; both of which are critical ethical considerations. Notably, our procedure now incorporates an infusion pump that allows up to 10 animals to be simultaneously injected with tumor cells. To demonstrate the utility of this procedure, we established human U87MG glioma cells as intracranial xenografts in mice, which were then treated with AMG102; a fully human antibody directed to HGF/scatter factor currently undergoing clinical evaluation(2-5). Systemic injection of AMG102 significantly prolonged the survival of all mice with intracranial U87MG xenografts and resulted in a number of complete cures. This study demonstrates that the guide screw method is an inexpensive, highly reproducible approach for establishing intracranial xenografts. Furthermore, it provides a relevant physiological model for validating novel therapeutic strategies for the treatment of brain cancers.
    Journal of Visualized Experiments 01/2011;
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: Here, we describe the efficacy of the novel small molecule c-Met inhibitor BAY 853474 in reducing tumor growth in the Hs746T gastric cancer xenograft model and tested the suitability of 2-deoxy-2-[(18)F]fluoro-D: -glucose ([(18)F]FDG) versus 3'-deoxy-3'-18F-fluorothymidine ([(18)F]FLT) for response monitoring in a gastric cancer xenograft mouse model using small animal PET. PROCEDURES: The c-Met inhibitor or vehicle control was administered orally at various doses in tumor-bearing mice. Glucose uptake and proliferation was measured using PET before, 48 and 96 h after the first treatment. The PET data were compared to data from tumor growth curves, autoradiography, Glut-1 and Ki-67 staining of tumor sections, and biochemical analysis of tissue probes, i.e., c-Met and ERK phosphorylation and cyclin D1 levels. RESULTS: BAY 853474 significantly reduces tumor growth. [(18)F]FDG uptake in Hs746T tumors was significantly reduced in the groups receiving the drug, compared with the control group. The [(18)F]FLT uptake in the tumor tissue was completely absent 96 h after treatment. Autoradiographic, immunohistochemical, and biochemical analyses confirmed the PET findings. Treatment with the c-Met inhibitor did not affect body weight or glucose levels, and no adverse effects were observed in the animals. CONCLUSION: These preclinical findings suggest that clinical PET imaging is a useful tool for early response monitoring in clinical studies.
    Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging 08/2012; · 2.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The N-methyl-N'-nitroso-guanidine human osteosarcoma transforming gene (MET) receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) control cellular signaling cascades that direct cell growth, proliferation, survival, and motility. Aberrant MET/HGF activation has been observed in many tumor types, can occur by multiple mechanisms, and promotes cellular proliferation and metastasis via growth factor receptors and other oncogenic receptor pathways. Thus, MET/HGF inhibition has emerged as targeted anticancer therapies. Preclinically, neoplastic and metastatic phenotypes of several tumor cells, including non-small cell lung cancer, hepatocellular carcinoma, and gastric cancer, were abrogated by MET inhibition. Ongoing clinical development with tivantinib, cabozantinib, onartuzumab, crizotinib, rilotumumab, and ficlatuzumab has shown encouraging results. These trials have established a key role for MET in a variety of tumor types. Evidence is emerging for identification of aberrant MET activity biomarkers and selection of patient subpopulations that may benefit from targeted MET and HGF inhibitor treatment.
    Cancer Treatment Reviews 02/2013; · 6.02 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014