Haplotype Association Mapping of Acute Lung Injury in Mice Implicates Activin A Receptor, Type 1

Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA.
American Journal of Respiratory and Critical Care Medicine (Impact Factor: 13). 02/2011; 183(11):1499-509. DOI: 10.1164/rccm.201006-0912OC
Source: PubMed


Because acute lung injury is a sporadic disease produced by heterogeneous precipitating factors, previous genetic analyses are mainly limited to candidate gene case-control studies.
To develop a genome-wide strategy in which single nucleotide polymorphism associations are assessed for functional consequences to survival during acute lung injury in mice.
To identify genes associated with acute lung injury, 40 inbred strains were exposed to acrolein and haplotype association mapping, microarray, and DNA-protein binding were assessed.
The mean survival time varied among mouse strains with polar strains differing approximately 2.5-fold. Associations were identified on chromosomes 1, 2, 4, 11, and 12. Seven genes (Acvr1, Cacnb4, Ccdc148, Galnt13, Rfwd2, Rpap2, and Tgfbr3) had single nucleotide polymorphism (SNP) associations within the gene. Because SNP associations may encompass "blocks" of associated variants, functional assessment was performed in 91 genes within ± 1 Mbp of each SNP association. Using 10% or greater allelic frequency and 10% or greater phenotype explained as threshold criteria, 16 genes were assessed by microarray and reverse real-time polymerase chain reaction. Microarray revealed several enriched pathways including transforming growth factor-β signaling. Transcripts for Acvr1, Arhgap15, Cacybp, Rfwd2, and Tgfbr3 differed between the strains with exposure and contained SNPs that could eliminate putative transcriptional factor recognition sites. Ccdc148, Fancl, and Tnn had sequence differences that could produce an amino acid substitution. Mycn and Mgat4a had a promoter SNP or 3'untranslated region SNPs, respectively. Several genes were related and encoded receptors (ACVR1, TGFBR3), transcription factors (MYCN, possibly CCDC148), and ubiquitin-proteasome (RFWD2, FANCL, CACYBP) proteins that can modulate cell signaling. An Acvr1 SNP eliminated a putative ELK1 binding site and diminished DNA-protein binding.
Assessment of genetic associations can be strengthened using a genetic/genomic approach. This approach identified several candidate genes, including Acvr1, associated with increased susceptibility to acute lung injury in mice.


Available from: Y. Peter Di
  • Source
    • "These loci include CBARA1, ARHGAP15, and RNF216. CBARA1 regulates calcium uptake by the mitochondria [17], ARHGAP15 may be involved in survival after acute lung injury [18], and RNF216 encodes an enzyme that inhibits NF-kappa B activation pathways [19], which are involved in HIF-α induction [20]. In addition, we performed a pathway enrichment analysis using the Panther Classification System tools [21] on the top LSBL candidate genes (100 kb up- and downstream) to identify pathways that are overrepresented. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic analysis of high-altitude populations residing in the Andes and Tibet has revealed several candidate loci for involvement in high-altitude adaptation, a subset of which have also been shown to be associated with hemoglobin levels, including EPAS1, EGLN1, and PPARA, which play a role in the HIF-1 pathway. Here, we have extended this work to high- and low-altitude populations living in Ethiopia, for which we have measured hemoglobin levels. We genotyped the Illumina 1M SNP array and employed several genome-wide scans for selection and targeted association with hemoglobin levels to identify genes that play a role in adaptation to high altitude. We have identified a set of candidate genes for positive selection in our high-altitude population sample, demonstrated significantly different hemoglobin levels between high- and low-altitude Ethiopians and have identified a subset of candidate genes for selection, several of which also show suggestive associations with hemoglobin levels. We highlight several candidate genes for involvement in high-altitude adaptation in Ethiopia, including CBARA1, VAV3, ARNT2 and THRB. Although most of these genes have not been identified in previous studies of high-altitude Tibetan or Andean population samples, two of these genes (THRB and ARNT2) play a role in the HIF-1 pathway, a pathway implicated in previous work reported in Tibetan and Andean studies. These combined results suggest that adaptation to high altitude arose independently due to convergent evolution in high-altitude Amhara populations in Ethiopia.
    Genome biology 01/2012; 13(1):R1. DOI:10.1186/gb-2012-13-1-r1 · 10.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The magnitude of benefit is variable for advanced non-small cell lung cancer (NSCLC) patients receiving platinum-based chemotherapy. The purpose of this study is to determine whether genetic variations in the transforming growth factor-beta (TGF-β) pathway are associated with clinical outcomes in NSCLC patients receiving first-line platinum-based chemotherapy. Five hundred and ninety-eight advanced-stage NSCLC patients who received first-line platinum-based chemotherapy with or without radiotherapy were recruited at the MD Anderson Cancer Center between 1995 and 2007. DNA from blood was genotyped for 227 single nucleotide polymorphisms (SNPs) in 23 TGF-β pathway-related genes to evaluate their associations with overall survival. In individual SNP analysis, 22 variants were significantly associated with overall survival, of which the strongest associations were found for BMP2:rs235756 [hazard ratio (HR) = 1.45; 95% confidence interval (CI), 1.11-1.90] and SMAD3:rs4776342 (HR = 1.25; 95% CI, 1.06-1.47). Fifteen and 18 genetic loci displayed treatment-specific associations for chemotherapy and chemoradiation, respectively, identifying a majority of the cases who would be predicted to respond favorably to a specific treatment regimen. BMP2:rs235753 and a haplotype in SMAD3 were associated with overall survival for both treatment modalities. Cumulative effect analysis showed that multiple risk genotypes had a significant dose-dependent effect on overall survival (P(trend) = 2.44 x 10(-15)). Survival tree analysis identified subgroups of patients with dramatically different median survival times of 45.39 versus 13.55 months and 18.02 versus 5.89 months for high- and low- risk populations when treated with chemoradiation and chemotherapy, respectively. These results suggest that genetic variations in the TGF-β pathway are potential predictors of overall survival in NSCLC patients treated with platinum-based chemotherapy with or without radiation.
    Carcinogenesis 04/2011; 32(7):1050-6. DOI:10.1093/carcin/bgr067 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This investigation sought to better understand the metabolic role of the lung and to generate insights into the pathogenesis of acrolein-induced acute lung injury. A respiratory irritant, acrolein is generated by overheating cooking oils or by domestic cooking using biomass fuels, and is in environmental tobacco smoke, a health hazard in the restaurant workplace. Using SM/J (sensitive) and 129X1/SvJ (resistant) inbred mouse strains, the lung metabolome was integrated with the transcriptome profile before and after acrolein exposure. A total of 280 small molecules were identified and mean values (log 2 >0.58 or <-0.58, p<0.05) were considered different for between-strain comparisons or within-strain responses to acrolein treatment. At baseline, 24 small molecules increased and 33 small molecules decreased in the SM/J mouse lung as compared to 129X1/SvJ mouse lung. Notable among the increased compounds was malonylcarnitine. Following acrolein exposure, several molecules indicative of glycolysis and branched chain amino acid metabolism increased similarly in both strains, whereas SM/J mice were less effective in generating metabolites related to fatty acid β-oxidation. These findings suggest management of energetic stress varies between these strains, and that the ability to evoke auxiliary energy generating pathways rapidly and effectively may be critical in enhancing survival during acute lung injury in mice.
    Molecular Nutrition & Food Research 09/2011; 55(9):1423-34. DOI:10.1002/mnfr.201100291 · 4.60 Impact Factor
Show more