Evaluation of Agaricus blazei in vivo for antigenotoxic, anticarcinogenic, phagocytic and immunomodulatory activities.

Centro de Estudos em Nutrição e Genética Toxicológica-CENUGEN, Departamento de Nutrição, Centro Universitário Filadélfia, Londrina-PR, Brazil.
Regulatory Toxicology and Pharmacology (Impact Factor: 2.13). 02/2011; 59(3):412-22. DOI: 10.1016/j.yrtph.2011.01.004
Source: PubMed

ABSTRACT The development of various types of cancer results from the interaction among endogenous, environmental and hormonal factors, where the most notable of these factors is diet. The aim of the present study was to determine the antigenotoxic, anticarcinogenic, phagocytic and immunomodulatory activities of Agaricus blazei. The test antigenotoxicity (Comet Assay) and anticarcinogenic (Test of Aberrant Crypt Foci) assess changes in DNA and/or intestinal mucosa that correlate to cancer development. Tests of phagocytosis in the spleen and differential count in blood cells allow the inference of modulation of the immune system as well as to propose a way of eliminating cells with DNA damage. Supplementation with the mushroom was carried out under pre-treatment, simultaneous treatment, post-treatment and pre-treatment+continuous conditions. Statistical analysis demonstrated that the mushroom did not have genotoxic activity but showed antigenotoxic activity. Supplementation caused an increase in the number of monocytes and in phagocytic activity, suggesting that supplementation increases a proliferation of monocytes, consequently increasing phagocytic capacity especially in the groups pre-treatment, simultaneous and pre-treatment+continuous. The data suggest that A. blazei could act as a functional food capable of promoting immunomodulation which can account for the destruction of cells with DNA alterations that correlate with the development of cancer, since this mushroom was demonstrated to have a preventive effect against pre-neoplastic colorectal lesions evaluated by the aberrant crypt foci assay. According to these results and the literature, it is believed that supplementation with A. blazei can be an efficient method for the prevention of cancer as well as possibly being an important coadjuvant treatment in chemotherapy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies in rodents treated with the pro-carcinogen 1,2-dimethylhydrazine suggested that the consumption of wheat bran protected against DNA damage in the colon and rectum. Based on this information, we evaluated wheat bran as a functional food in the prevention and treatment of colon cancer. We used the aberrant crypt focus assay to evaluate the anticarcinogenic potential of wheat bran (Triticum aestivum variety CD-104), the comet assay to evaluate its antigenotoxicity potential, and the micronucleus assay to evaluate its antimutagenic potential. The wheat bran gave good antimutagenic and anticarcinogenic responses; the DNA damage decreased from 90.30 to 26.37% and from 63.35 to 28.73%, respectively. However, the wheat bran did not significantly reduce genotoxicity. Further tests will be necessary, including tests in human beings, before this functional food can be recommended as an adjunct in the prevention and treatment of colon cancer.
    Genetics and molecular research: GMR 01/2013; 12(2):1646-59. · 0.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resorcinolic lipids have important biological actions, including anti-carcinogenic activity. Therefore, we evaluated the mutagenic, genotoxic, immunomodulatory and apoptotic potential and the biochemical and histopathological changes caused by the synthetic resorcinolic lipid 3-Heptyl-3,4,6-trimethoxy-3H-isobenzofuran-1-one, (AMS35AA; 10, 20 and 40 mg/kg) alone or in combination with cyclophosphamide (100 mg/kg) in Swiss mice. The results indicated that AMS35AA is not genotoxic or mutagenic and does not alter liver or kidney histology. However, the compound does cause an increase (p < 0.05) in the levels of glutamic-oxaloacetic transaminase and creatinine and in splenic phagocytosis and liver and kidney apoptosis. When combined with cyclophosphamide, AMS35AA caused increased (p < 0.05) mutagenic damage (although the compound had anti-genotoxic activity), splenic phagocytosis, neutropenia and glutamic-oxaloacetic transaminase and creatinine levels (even in the absence of histological damage) and induced liver and kidney apoptosis. We conclude that this resorcinolic lipid may be an important chemotherapy adjuvant that can potentiate mutagenic damage and increase apoptosis caused by cyclophosphamide without causing adverse effects. In addition, the immunomodulatory activity of the compound should be noted, which counters reductions in lymphocyte number, a primary side effect of cyclophosphamide in cancer therapy.
    European Journal of Medicinal Chemistry 01/2014; 75C:132-142. · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gochnatia polymorpha ssp. floccosa is used in folk medicine to treat inflammation and infections. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most commonly consumed medications during pregnancy in women with inflammatory diseases. However, the relationship between the use of NSAIDs and the risk of miscarriage and birth defects and/or benefits is not fully understood. Thus, an investigation regarding the use of G. polymorpha during gestation is of relevance for developing safe anti-inflammatory drugs for use during pregnancy. The pregnant females were randomly divided into 5 groups. Control Group received a hydroalcoholic solution (1.2%), via gavage, for at least 15 days prior to mating and throughout the gestational period. The Pre-treatment Group received G. polymorpha ethanol extract (GPEE), via gavage, at a dose of 100mg/kg body weight (b.w.) for at least 15 days prior to mating and up to the appearance of the vaginal plug. The Organogenesis Group received GPEE at a dose of 100mg/kg (b.w.), via gavage, on the 5-15th gestacional day. The Pregnancy Group received GPEE at a dose of 100mg/kg (b.w.), via gavage, throughout the gestational period (from the 1st to the 18th day of pregnancy). The Pre+Pregnancy Group received GPEE at a dose of 100mg/kg (b.w.), via gavage, for at least 15 days prior to mating and throughout the entire gestational period. The clinical signals of maternal toxicity and teratogenesis were evaluated. Additional assays to evaluate chronic inflammation, antigenotoxicity and immunomodolatory activity were performed. The results indicated that GPEE does not interfere with reproductive performance or embryo-fetal development but does correlate with reduced weight and fetal length. The extract was not teratogenic or mutagenic or an immunomodulator. However, GPEE did exhibit effective anti-inflammatory activity. Based on this study, it can be inferred that GPEE is an important, safe anti-inflammatory agent for use during pregnancy according to the experimental design we utilized, which opens up possibilities for the bioprospecting of a new anti-inflammatory phytotherapy for use during pregnancy.
    Journal of ethnopharmacology 04/2014; · 2.32 Impact Factor


Available from
Oct 14, 2014