Mycobacterium tuberculosis mtrA merodiploid strains with point mutations in the signal-receiving domain of MtrA exhibit growth defects in nutrient broth

Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA.
Plasmid (Impact Factor: 1.58). 02/2011; 65(3):210-8. DOI: 10.1016/j.plasmid.2011.01.002
Source: PubMed


The genetic and biochemical aspects of the essential Mycobacteriumtuberculosis MtrAB two-component regulatory signal transduction (2CRS) system have not been extensively investigated. We show by bacterial two-hybrid assay that the response regulator (RR) MtrA and the sensor kinase MtrB interact. We further demonstrate that divalent metal ions [Mg²+, Ca²+ or both] promote MtrB kinase autophosphorylation activity, but only Mg²+ promotes phosphotransfer to MtrA. Replacement of the conserved aspartic acid residues at positions 13 and 56 with alanine (D13A), glutamine (D56E) or asparagine (D56N) prevented MtrA phosphorylation, indicating that these residues are important for phosphorylation. The MtrA(D56E) and MtrA(D13A) proteins bound to the promoter of fbpB, the gene encoding antigen 85B protein, efficiently in the absence of phosphorylation, whereas MtrA(D56N) did not. We also show that M.tuberculosismtrA merodiploids overproducing MtrA(D13A), unlike cells overproducing wild-type MtrA, grow poorly in nutrient broth and show reduced expression of fbpB. These latter findings are reminiscent of a phenotype associated with MtrA overproduction during intramacrophage growth. Our results suggest that MtrA(D13A) behaves like a constitutively active response regulator and that further characterization of mtrA merodiploid strains will provide valuable clues to the MtrAB system.

Download full-text


Available from: Malini Rajagopalan, Dec 19, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms responsible for activation of the MtrAB two-component regulatory signal transduction system, which includes sensor kinase MtrB and response regulator MtrA, are unknown. Here, we show that an MtrB-GFP fusion protein localized to the cell membrane, the septa, and the poles in Mycobacterium tuberculosis and Mycobacterium smegmatis. This localization was independent of MtrB phosphorylation status but dependent upon the assembly of FtsZ, the initiator of cell division. The M. smegmatis mtrB mutant was filamentous, defective for cell division, and contained lysozyme-sensitive cell walls. The mtrB phenotype was complemented by either production of MtrB protein competent for phosphorylation or overproduction of MtrA(Y102C) and MtrA(D13A) mutant proteins exhibiting altered phosphorylation potential, indicating that either MtrB phosphorylation or MtrB independent expression of MtrA regulon genes, including those involved in cell wall processing, are necessary for regulated cell division. In partial support of this observation, we found that the essential cell wall hydrolase ripA is an MtrA target and that the expression of bona fide MtrA targets ripA, fbpB, and dnaA were compromised in the mtrB mutant and partially rescued upon MtrA(Y102C) and MtrA(D13A) overproduction. MtrB septal assembly was compromised upon FtsZ depletion and exposure of cells to mitomycin C, a DNA damaging agent, which interferes with FtsZ ring assembly. Expression of MtrA targets was also compromised under the above conditions, indicating that MtrB septal localization and MtrA regulon expression are linked. We propose that MtrB septal association is a necessary feature of MtrB activation that promotes MtrA phosphorylation and MtrA regulon expression.
    Journal of Biological Chemistry 05/2012; 287(28):23887-99. DOI:10.1074/jbc.M112.346544 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The MtrAB histidine-aspartate signal transduction of mycobacteria includes the response regulator MtrA and sensor kinase MtrB. We recently showed that Mycobacterium smegmatis ΔmtrB is filamentous, defective for cell division, cell shape maintenance and shows compromised MtrA target gene expression. Interestingly, overproduction of phosphorylation competent M. tuberculosis MtrAY102C reverses the ΔmtrB mutant phenotype, although the genetic basis of phenotype reversal is unknown. Here we show that introduction of D56N mutation in MtrAY102C completely abolished its phosphorylation potential yet the double mutant protein retained a partial ability to reverse the mtrB mutant phenotype indicating that phosphorylation activity is not necessary for the function of MtrAY102C. The phosphorylation-defective MtrAD56N-Y102C protein bound its target promoters ripA and fbpB efficiently. Together, these results support a hypothesis that the gain-of-function phenotype of MtrAY102C is in part due to its ability to function as a constitutively active protein in the absence of phosphorylation.
    Tuberculosis (Edinburgh, Scotland) 12/2013; 93S:S28-S32. DOI:10.1016/S1472-9792(13)70007-6 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two-component regulatory systems (2CRSs) are widely used by bacteria to sense and respond to environmental stimuli with coordinated changes in gene expression. Systems are normally comprised of a sensory kinase protein that activates a transcriptional regulator by phosphorylation. Mycobacteria have few 2CRSs, but they are of key importance for bacterial survival and play important roles in pathogenicity. Mycobacterium tuberculosis has 12 paired two-component regulatory systems (which include a system with two regulators and one sensor, and a split sensor system), as well as four orphan regulators. Several systems are involved in virulence, and disruption of different systems leads to attenuation or hypervirulence. PhoPR plays a major role in regulating cell wall composition, and its inactivation results in sufficient attenuation of M. tuberculosis that deletion strains are live vaccine candidates. MprAB controls the stress response and is required for persistent infections. SenX3-RegX3 is required for control of aerobic respiration and phosphate uptake, and PrrAB is required for adaptation to intracellular infection. MtrAB is an essential system that controls DNA replication and cell division. The remaining systems (KdpDE, NarL, TrcRS, TcrXY, TcrA, PdtaRS, and four orphan regulators) are less well understood. The structure and binding motifs for several regulators have been characterized, revealing variations in function and operation. The sensors are less well characterized, and stimuli for many remain to be confirmed. This chapter reviews our current understanding of the role of two-component systems in mycobacteria, in particular M. tuberculosis.
    02/2014; 2(1). DOI:10.1128/microbiolspec.MGM2-0010-2013
Show more