Atomic View of Calcium-Induced Clustering of Phosphatidylserine in Mixed Lipid Bilayers

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
Biochemistry (Impact Factor: 3.02). 02/2011; 50(12):2264-73. DOI: 10.1021/bi1013694
Source: PubMed


Membranes play key regulatory roles in biological processes, with bilayer composition exerting marked effects on binding affinities and catalytic activities of a number of membrane-associated proteins. In particular, proteins involved in diverse processes such as vesicle fusion, intracellular signaling cascades, and blood coagulation interact specifically with anionic lipids such as phosphatidylserine (PS) in the presence of Ca(2+) ions. While Ca(2+) is suspected to induce PS clustering in mixed phospholipid bilayers, the detailed structural effects of this ion on anionic lipids are not established. In this study, combining magic angle spinning (MAS) solid-state NMR (SSNMR) measurements of isotopically labeled serine headgroups in mixed lipid bilayers with molecular dynamics (MD) simulations of PS lipid bilayers in the presence of different counterions, we provide site-resolved insights into the effects of Ca(2+) on the structure and dynamics of lipid bilayers. Ca(2+)-induced conformational changes of PS in mixed bilayers are observed in both liposomes and Nanodiscs, a nanoscale membrane mimetic of bilayer patches. Site-resolved multidimensional correlation SSNMR spectra of bilayers containing (13)C,(15)N-labeled PS demonstrate that Ca(2+) ions promote two major PS headgroup conformations, which are well resolved in two-dimensional (13)C-(13)C, (15)N-(13)C, and (31)P-(13)C spectra. The results of MD simulations performed on PS lipid bilayers in the presence or absence of Ca(2+) provide an atomic view of the conformational effects underlying the observed spectra.

Download full-text


Available from: John Boettcher,
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many regulatory processes in biology involve reversible association of proteins with membranes. Clotting proteins bind to phosphatidylserine (PS) on cell surfaces, but a clear picture of this interaction has yet to emerge. We present a novel explanation for membrane binding by GLA domains of clotting proteins, supported by biochemical studies, solid-state NMR analyses, and molecular dynamics simulations. The model invokes a single “phospho-l-serine-specific” interaction and multiple “phosphate-specific” interactions. In the latter, the phosphates in phospholipids interact with tightly bound Ca2+ in GLA domains. We show that phospholipids with any headgroup other than choline strongly synergize with PS to enhance factor X activation. We propose that phosphatidylcholine and sphingomyelin (the major external phospholipids of healthy cells) are anticoagulant primarily because their bulky choline headgroups sterically hinder access to their phosphates. Following cell damage or activation, exposed PS and phosphatidylethanolamine collaborate to bind GLA domains by providing phospho-l-serine-specific and phosphate-specific interactions, respectively.
    Journal of Biological Chemistry 05/2011; 286(26):23247-53. DOI:10.1074/jbc.M111.251769 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most of the steps in the blood clotting cascade require clotting proteins to bind to membrane surfaces with exposed phosphatidylserine. In spite of the importance of these protein-membrane interactions, we still lack a detailed understanding of how clotting proteins interact with membranes and how membranes contribute so profoundly to catalysis. Our laboratories are using multidisciplinary approaches to explore, at atomic-resolution, how blood clotting protein complexes assemble and function on membrane surfaces.
    Journal of Thrombosis and Haemostasis 07/2011; 9 Suppl 1(1):162-7. DOI:10.1111/j.1538-7836.2011.04300.x · 5.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelets are a remarkable mammalian adaptation that are required for human survival by virtue of their ability to prevent and arrest bleeding. Ironically, however, in the past century, the platelets' hemostatic activity became maladaptive for the increasingly large percentage of individuals who develop age-dependent progressive atherosclerosis. As a result, platelets also make a major contribution to ischemic thrombotic vascular disease, the leading cause of death worldwide. In this brief review, I provide historical descriptions of a highly selected group of topics to provide a framework for understanding our current knowledge and the trends that are likely to continue into the future of platelet research. For convenience, I separate the eras of platelet research into the "Descriptive Period" extending from ~1880-1960 and the "Mechanistic Period" encompassing the past ~50 years since 1960. We currently are reaching yet another inflection point, as there is a major shift from a focus on traditional biochemistry and cell and molecular biology to an era of single molecule biophysics, single cell biology, single cell molecular biology, structural biology, computational simulations, and the high-throughput, data-dense techniques collectively named with the "omics postfix". Given the progress made in understanding, diagnosing, and treating many rare and common platelet disorders during the past 50 years, I think it appropriate to consider it a Golden Age of Platelet Research and to recognize all of the investigators who have made important contributions to this remarkable achievement..
    Journal of Thrombosis and Haemostasis 07/2011; 9 Suppl 1(1):374-95. DOI:10.1111/j.1538-7836.2011.04356.x · 5.72 Impact Factor
Show more