Comparative analysis and mutation effects of fpp2-fpp1 tandem genes encoding proteolytic extracellular enzymes of Flavobacterium psychrophilum

Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Spain.
Microbiology (Impact Factor: 2.84). 02/2011; 157(Pt 4):1196-204. DOI: 10.1099/mic.0.046938-0
Source: PubMed

ABSTRACT Flavobacterium psychrophilum is a very significant fish pathogen that secretes two biochemically characterized extracellular proteolytic enzymes, Fpp1 and Fpp2. The genes encoding these enzymes are organized as an fpp2-fpp1 tandem in the genome of strain F. psychrophilum THC02/90. Analysis of the corresponding encoded proteins showed that they belong to two different protease families. For gene function analysis, new genetic tools were developed in F. psychrophilum by constructing stable isogenic fpp1 and fpp2 mutants via single-crossover homologous recombination. RT-PCR analysis of wild-type and mutant strains suggested that both genes are transcribed as a single mRNA from the promoter located upstream of the fpp2 gene. Phenotypic characterization of the fpp2 mutant showed lack of caseinolytic activity and higher colony spreading compared with the wild-type strain. Both characteristics were recovered in the complemented strain. One objective of this work was to assess the contribution to virulence of these proteolytic enzymes. LD(50) experiments using the wild-type strain and mutants showed no significant differences in virulence in a rainbow trout challenge model, suggesting instead a possible nutritional role. The gene disruption procedure developed in this work, together with the knowledge of the complete genome sequence of F. psychrophilum, open new perspectives for the study of gene function in this bacterium.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial cold water disease (BCWD) is a globally distributed freshwater fish disease caused by the Gram-negative bacterium Flavobacterium psychrophilum. It is a particularly devastating infection in fry salmonids and may lead to high levels of mortality. In spite of its economic impact on fish farms, neither the biology of the bacterium nor the bacterium–host interactions are well understood. This review provides a synopsis of the major problems related to critical remaining questions about research into the use of vaccines against F. psychrophilum and the development of a commercial vaccine against this disease. Studies using sera from convalescent rainbow trout have shown the antigenic properties of different proteins such as OmpH, OmpA and FspA, as well as low and high molecular mass lipopolysaccharide of F. psychrophilum, which are potential candidates for subunit vaccines. Inactivated F. psychrophilum bacterins have been successfully tested as vaccines under laboratory conditions by both immersion and intraperitoneal routes. However, the efficacy and the practical usefulness of these preparations still have to be proved. The use of attenuated and wild-type strains to immunize fish showed that these systems offer high levels of protection. Nevertheless, their application clashes with the regulations for environmental protection in many countries. In conclusion, protective vaccines against BCWD are theoretically possible, but substantial efforts still have to be made in order to permit the development of a commercial vaccine.
    Microbial Biotechnology 12/2013; 7(5). DOI:10.1111/1751-7915.12099 · 3.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this “fastidious” bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters.
    PLoS ONE 02/2015; 10(2):e0117969. DOI:10.1371/journal.pone.0117969 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flavobacterium psychrophilum is an important fish pathogen, responsible for Cold Water Disease, with a significant economic impact on salmonid farms worldwide. In spite of this, little is known about the bacterial physiology and pathogenesis mechanisms, maybe because it is difficult to manipulate, being considered a fastidious microorganism. Mutants obtained using a Tn4351 transposon were screened in order to identify those with alteration in colony morphology, colony spreading and extracellular proteolytic activity, amongst other phenotypes. A F. psychrophilum mutant lacking gliding motility showed interruption of the FP1638 locus that encodes a putative type-2 glycosyltransferase (from here on referred to as fpgA gene, Flavobacterium psychrophilum glycosyltransferase). Additionally, the mutant also showed a decrease in the extracellular proteolytic activity as a consequence of down regulation in the fpgA mutant background of the fpp2-fpp1 operon promoter, responsible for the major extracellular proteolytic activity of the bacterium. The protein glycosylation profile of the parental strain showed the presence of a 22 kDa glycosylated protein which is lost in the mutant. Complementation with the fpgA gene led to the recovery of the wild-type phenotype. LD50 experiments in the rainbow trout infection model show that the mutant was highly attenuated. The pleiotropic phenotype of the mutant demonstrated the importance of this glycosyltranferase in the physiology and virulence of the bacterium. Moreover, the fpgA mutant strain could be considered a good candidate for the design of an attenuated vaccine.
    Veterinary Research 12/2015; 46(1):1. DOI:10.1186/s13567-014-0124-5 · 3.38 Impact Factor


Available from
Jun 9, 2014