Article

Nuclear receptors from the ctenophore Mnemiopsis leidyi lack a zinc-finger DNA-binding domain: lineage-specific loss or ancestral condition in the emergence of the nuclear receptor superfamily?

Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA. .
EvoDevo (Impact Factor: 3.1). 02/2011; 2(1):3. DOI: 10.1186/2041-9139-2-3
Source: PubMed

ABSTRACT Nuclear receptors (NRs) are an ancient superfamily of metazoan transcription factors that play critical roles in regulation of reproduction, development, and energetic homeostasis. Although the evolutionary relationships among NRs are well-described in two prominent clades of animals (deuterostomes and protostomes), comparatively little information has been reported on the diversity of NRs in early diverging metazoans. Here, we identified NRs from the phylum Ctenophora and used a phylogenomic approach to explore the emergence of the NR superfamily in the animal kingdom. In addition, to gain insight into conserved or novel functions, we examined NR expression during ctenophore development.
We report the first described NRs from the phylum Ctenophora: two from Mnemiopsis leidyi and one from Pleurobrachia pileus. All ctenophore NRs contained a ligand-binding domain and grouped with NRs from the subfamily NR2A (HNF4). Surprisingly, all the ctenophore NRs lacked the highly conserved DNA-binding domain (DBD). NRs from Mnemiopsis were expressed in different regions of developing ctenophores. One was broadly expressed in the endoderm during gastrulation. The second was initially expressed in the ectoderm during gastrulation, in regions corresponding to the future tentacles; subsequent expression was restricted to the apical organ. Phylogenetic analyses of NRs from ctenophores, sponges, cnidarians, and a placozoan support the hypothesis that expansion of the superfamily occurred in a step-wise fashion, with initial radiations in NR family 2, followed by representatives of NR families 3, 6, and 1/4 originating prior to the appearance of the bilaterian ancestor.
Our study provides the first description of NRs from ctenophores, including the full complement from Mnemiopsis. Ctenophores have the least diverse NR complement of any animal phylum with representatives that cluster with only one subfamily (NR2A). Ctenophores and sponges have a similarly restricted NR complement supporting the hypothesis that the original NR was HNF4-like and that these lineages are the first two branches from the animal tree. The absence of a zinc-finger DNA-binding domain in the two ctenophore species suggests two hypotheses: this domain may have been secondarily lost within the ctenophore lineage or, if ctenophores are the first branch off the animal tree, the original NR may have lacked the canonical DBD. Phylogenomic analyses and categorization of NRs from all four early diverging animal phyla compared with the complement from bilaterians suggest the rate of NR diversification prior to the cnidarian-bilaterian split was relatively modest, with independent radiations of several NR subfamilies within the cnidarian lineage.

0 Followers
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many responses to adrenal and sex steroids are mediated by receptors that belong to the nuclear receptor family of transcription factors. We investigated the co-evolution of these vertebrate steroid receptors and the enzymes that synthesize adrenal and sex steroids through data mining of genomes from cephalochordates [amphioxus], cyclostomes [lampreys, hagfish], chondrichthyes [sharks, rays, skates], actinopterygii [ray-finned fish], sarcopterygii [coelacanths, lungfishes and terrestrial vertebrates]. An ancestor of the estrogen receptor and 3-ketosteroid receptors evolved in amphioxus. A corticoid receptor and a progesterone receptor evolved in cyclostomes, and an androgen receptor evolved in gnathostomes. Amphioxus contains CYP11, CYP17, CYP19, 3β/Δ5-4-HSD and 17β-HSD14, which suffice for the synthesis of estradiol and Δ5-androstenediol. Amphioxus also contains CYP27, which catalyzes the synthesis of 27-hydroxy-cholesterol, another estrogen. Lamprey contains, in addition, CYP21, which catalyzes the synthesis of 11-deoxycortisol. Chondrichthyes contain, in addition, CYP11A, CYP11C, CYP17A1, CYP17A2. Coelacanth also contains CYP11C1, the current descendent from a common ancestor with modern land vertebrate CYP11B genes, which catalyze the synthesis of cortisol, corticosterone and aldosterone. Interestingly, CYP11B2, aldosterone synthase, evolved from separate gene duplications in at least old world monkeys and two suborders of rodents Sciurognathi (including mice and rats) and Hystricomorpha (including guinea pigs). Thus, steroid receptors and steroidogenic enzymes co-evolved at key transitions in the evolution of vertebrates. Together, this suite of receptors and enzymes through their roles in transcriptional regulation of reproduction, development, homeostasis and the response to stress contributed to the evolutionary diversification of vertebrates.
    The Journal of Steroid Biochemistry and Molecular Biology 12/2014; DOI:10.1016/j.jsbmb.2014.10.020 · 4.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An important question in experimental embryology is to understand how the developmental potential responsible for the generation of distinct cell types is spatially segregated over developmental time. Classical embryological work showed that ctenophores, a group of gelatinous marine invertebrates that arose early in animal evolution, display a highly stereotyped pattern of early development and a precocious specification of blastomere fates. Here we investigate the role of autonomous cell specification and the developmental timing of two distinct ctenophore cell types (motile compound comb-plate-like cilia and light-emitting photocytes) in embryos of the lobate ctenophore, Mnemiopsis leidyi. In Mnemiopsis, 9 h after fertilization, comb plate cilia differentiate into derivatives of the E lineage, while the bioluminescent capability begins in derivatives of the M lineage. Arresting cleavage with cytochalasin B at the 1-, 2- or 4-cell stage does not result in blastomere death; however, no visible differentiation of the comb-plate-like cilia or bioluminescence was observed. Cleavage arrest at the 8- or 16-cell stage, in contrast, results in the expression of both differentiation products. Fate-mapping experiments indicate that only the lineages of cells that normally express these markers in an autonomous fashion during normal development express these traits in cleavage-arrested 8- and 16-cell stage embryos. Lineages that form comb plates in a non-autonomous fashion (derivatives of the M lineage) do not. Timed actinomycin D and puromycin treatments show that transcription and translation are required for comb formation and suggest that the segregated material might be necessary for activation of the appropriate genes. Interestingly, even in the absence of cytokinesis, differentiation markers appear to be activated at the correct times. Treatments with a DNA synthesis inhibitor, aphidicolin, show that the number of nuclear divisions, and perhaps the DNA to cytoplasmic ratio, are critical for the appearance of lineage-specific differentiation. Our work corroborates previous studies demonstrating that the cleavage program is causally involved in the spatial segregation and/or activation of factors that give rise to distinct cell types in ctenophore development. These factors are segregated independently to the appropriate lineage at the 8- and the 16-cell stages and have features of a clock, such that comb-plate-like cilia and light-emitting photoproteins appear at roughly the same developmental time in cleavage-arrested embryos as they do in untreated embryos. Nuclear division, which possibly affects DNA-cytoplasmic ratios, appears to be important in the timing of differentiation markers. Evidence suggests that the 60-cell stage, just prior to gastrulation, is the time of zygotic gene activation. Such cleavage-clock-regulated phenomena appear to be widespread amongst the Metazoa and these cellular and molecular developmental mechanisms probably evolved early in metazoan evolution.
    EvoDevo 01/2014; 5(1):4. DOI:10.1186/2041-9139-5-4 · 3.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mnemiopsis leidyi is a ctenophore native to the coastal waters of the western Atlantic Ocean. A number of studies on Mnemiopsis have led to a better understanding of many key biological processes, and these studies have contributed to the emergence of Mnemiopsis as an important model for evolutionary and developmental studies. Recently, we sequenced, assembled, annotated, and performed a preliminary analysis on the 150-megabase genome of the ctenophore, Mnemiopsis. This sequencing effort has produced the first set of whole-genome sequencing data on any ctenophore species and is amongst the first wave of projects to sequence an animal genome de novo using solely next-generation sequencing technologies.Description: The Mnemiopsis Genome Project Portal (http://research.nhgri.nih.gov/mnemiopsis/) is intended both as a resource for obtaining genomic information on Mnemiopsis through an intuitive and easy-to-use interface and as a model for developing customized Web portals that enable access to genomic data. The scope of data available through this Portal goes well beyond the sequence data available through GenBank, providing key biological information not available elsewhere, such as pathway and protein domain analyses; it also features a customized genome browser for data visualization. We expect that the availability of these data will allow investigators to advance their own research projects aimed at understanding phylogenetic diversity and the evolution of proteins that play a fundamental role in metazoan development. The overall approach taken in the development of this Web site can serve as a viable model for disseminating data from whole-genome sequencing projects, framed in a way that best-serves the specific needs of the scientific community.
    BMC Genomics 04/2014; 15(1):316. DOI:10.1186/1471-2164-15-316 · 4.04 Impact Factor

Full-text (4 Sources)

Download
72 Downloads
Available from
May 27, 2014