Article

Sphingolipid Storage Affects Autophagic Metabolism of the Amyloid Precursor Protein and Promotes A beta Generation

Department of Neurology, University of Bonn, 53127 Bonn, Germany.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 02/2011; 31(5):1837-49. DOI: 10.1523/JNEUROSCI.2954-10.2011
Source: PubMed

ABSTRACT Deposition of amyloid β peptides (Aβs) in extracellular amyloid plaques within the human brain is a hallmark of Alzheimer's disease (AD). Aβ derives from proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretases. The initial cleavage by β-secretase results in shedding of the APP ectodomain and generation of APP C-terminal fragments (APP-CTFs), which can then be further processed within the transmembrane domain by γ-secretase, resulting in release of Aβ. Here, we demonstrate that accumulation of sphingolipids (SLs), as occurs in lysosomal lipid storage disorders (LSDs), decreases the lysosome-dependent degradation of APP-CTFs and stimulates γ-secretase activity. Together, this results in increased generation of both intracellular and secreted Aβ. Notably, primary fibroblasts from patients with different SL storage diseases show strong accumulation of potentially amyloidogenic APP-CTFs. By using biochemical, cell biological, and genetic approaches, we demonstrate that SL accumulation affects autophagic flux and impairs the clearance of APP-CTFs. Thus, accumulation of SLs might not only underlie the pathogenesis of LSDs, but also trigger increased generation of Aβ and contribute to neurodegeneration in sporadic AD.

0 Followers
 · 
188 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysosomal storage diseases (LSDs) are a class of metabolic disorders caused by mutations in proteins critical for lysosomal function. Such proteins include lysosomal enzymes, lysosomal integral membrane proteins, and proteins involved in the post-translational modification and trafficking of lysosomal proteins. There are many recognized forms of LSDs and, although individually rare, their combined prevalence is estimated to be 1 in 8000 births. Over two-thirds of LSDs involve central nervous system (CNS) dysfunction (progressive cognitive and motor decline) and these symptoms are often the most debilitating. Although the genetic basis for these disorders is clear and the biochemistry of the proteins well understood, the cellular mechanisms by which deficiencies in these proteins disrupt neuronal viability remain ambiguous. In this review, we provide an overview of the widespread cellular perturbations occurring in LSDs, how they might be linked and interventions that may specifically or globally correct those defects.
    Trends in Neurosciences 06/2011; 34(8):401-10. DOI:10.1016/j.tins.2011.05.006 · 12.90 Impact Factor
  • Source
    Alzheimer's Disease Pathogenesis-Core Concepts, Shifting Paradigms and Therapeutic Targets, 09/2011; , ISBN: 978-953-307-690-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of GSL (glycosphingolipid) synthesis reduces Aβ (amyloid β-peptide) production in vitro. Previous studies indicate that GCS (glucosylceramide synthase) inhibitors modulate phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2) and that the ERK pathway may regulate some aspects of Aβ production. It is not clear whether there is a causative relationship linking GSL synthesis inhibition, ERK phosphorylation and Aβ production. In the present study, we treated CHO cells (Chinese-hamster ovary cells) and SH-SY5Y neuroblastoma cells, that both constitutively express human wild-type APP (amyloid precursor protein) and process this to produce Aβ, with GSL-modulating agents to explore this relationship. We found that three related ceramide analogue GSL inhibitors, based on the PDMP (D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol) structure, reduced cellular Aβ production and in all cases this was correlated with inhibition of pERK (phosphorylated ERK) formation. Importantly, the L-threo enantiomers of these compounds (that are inferior GSL synthesis inhibitors compared with the D-threo-enantiomers) also reduced ERK phosphorylation to a similar extent without altering Aβ production. Inhibition of ERK activation using either PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] or U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene) had no impact on Aβ production, and knockdown of endogenous GCS using small interfering RNA reduced cellular GSL levels without suppressing Aβ production or pERK formation. Our data suggest that the alteration in pERK levels following treatment with these ceramide analogues is not the principal mechanism involved in the inhibition of Aβ generation and that the ERK signalling pathway does not play a crucial role in processing APP through the amyloidogenic pathway.
    Clinical Science 11/2011; 122(9):409-19. DOI:10.1042/CS20110257 · 5.63 Impact Factor