Tau Protein Is Required for Amyloid beta-Induced Impairment of Hippocampal Long-Term Potentiation

Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 02/2011; 31(5):1688-92. DOI: 10.1523/JNEUROSCI.2610-10.2011
Source: PubMed

ABSTRACT Amyloid β (Aβ) and tau protein are both implicated in memory impairment, mild cognitive impairment (MCI), and early Alzheimer's disease (AD), but whether and how they interact is unknown. Consequently, we asked whether tau protein is required for the robust phenomenon of Aβ-induced impairment of hippocampal long-term potentiation (LTP), a widely accepted cellular model of memory. We used wild-type mice and mice with a genetic knock-out of tau protein and recorded field potentials in an acute slice preparation. We demonstrate that the absence of tau protein prevents Aβ-induced impairment of LTP. Moreover, we show that Aβ increases tau phosphorylation and that a specific inhibitor of the tau kinase glycogen synthase kinase 3 blocks the increased tau phosphorylation induced by Aβ and prevents Aβ-induced impairment of LTP in wild-type mice. Together, these findings show that tau protein is required for Aβ to impair synaptic plasticity in the hippocampus and suggest that the Aβ-induced impairment of LTP is mediated by tau phosphorylation. We conclude that preventing the interaction between Aβ and tau could be a promising strategy for treating cognitive impairment in MCI and early AD.

1 Follower
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: EFhd2 is a calcium-binding adaptor protein that has been found to be associated with pathologically aggregated tau in the brain in Alzheimer disease and in a mouse model of frontotemporal dementia. EFhd2 has cell type–specific functions, including the modulation of intracellular calcium responses, actin dynamics, and microtubule transport. Here we report that EFhd2 protein and mRNA levels are reduced in human frontal cortex tissue affected by different types of dementia with and without tau pathology. We show that EFhd2 is mainly a neuronal protein in the brain and is abundant in the forebrain. Using short hairpin RNA–mediated knockdown of EFhd2 expression in cultured cortical neurons, we demonstrate that loss of EFhd2 affects the number of synapses developed in vitro whereas it does not alter neurite outgrowth per se. Our data suggest that EFhd2 is involved in the control of synapse development and maintenance through means other than affecting neurite development. The changes in expression levels observed in human dementias might, therefore, play a significant role in disease onset and progression of dementia, which is characterized by the loss of synapses.
    Journal of Neuropathology and Experimental Neurology 11/2014; 73(12):1166-1182. DOI:10.1097/NEN.0000000000000138 · 4.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: No disease modifying therapy exists for Alzheimer's disease (AD). The growing burden of this disease to our society necessitates continued investment in drug development. Over the last decade, multiple phase 3 clinical trials testing drugs that were designed to target established disease mechanisms of AD have all failed to benefit patients. There is, therefore, a need for new treatment strategies. Changes to the transition metals, zinc, copper, and iron, in AD impact on the molecular mechanisms of disease, and targeting these metals might be an alternative approach to treat the disease. Here we review how metals feature in molecular mechanisms of AD, and we describe preclinical and clinical data that demonstrate the potential for metal-based drug therapy.
    Journal of the American Society for Experimental NeuroTherapeutics 10/2014; 12(1). DOI:10.1007/s13311-014-0312-z · 3.88 Impact Factor

Elizabeth Tunbridge