Article

Hepatocellular carcinoma with marginal superparamagnetic iron oxide uptake on T2*-weighted magnetic resonance imaging: histopathologic correlation.

Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
European journal of radiology (Impact Factor: 2.65). 01/2011; 80(3):e293-8. DOI: 10.1016/j.ejrad.2010.12.078
Source: PubMed

ABSTRACT To evaluate the characteristics of hepatocellular carcinomas (HCCs) with marginal superparamagnetic iron oxide (SPIO) uptake on T2*-weighted MRI.
The study group consisted of 73 patients with 83 surgically resected HCCs. Preoperative SPIO-enhanced MRI studies were retrospectively reviewed. Marginal SPIO uptake was considered positive if a rim-like or band-like low intensity area was present on SPIO-enhanced T2*-weighted images. The prevalence of marginal SPIO uptake was evaluated. Pathological specimens with hematoxylin and eosin staining and immunohistochemical staining of CD68 were reviewed in HCCs with marginal SPIO uptake and 33 HCCs without marginal SPIO uptake (control group).
Ten of 83 (12%) HCCs showed marginal SPIO uptake. All HCCs were hypervascular, and only one nodule showed a nodule-in-nodule appearance on imaging findings. The pathology specimens suggested possible causes of marginal SPIO uptake, including marginal macrophage infiltration in moderately or poorly differentiated HCC (n=4), residual normal hepatic tissue at the marginal area of confluent multinodular or single nodular with extranodular growth type HCC (n=3), and a well-differentiated HCC component in nodule-in-nodule type HCC (n=3). Marginal macrophage infiltration was not seen in the control group.
SPIO-enhanced MRI may be able to demonstrate marginal macrophage infiltration in HCC.

0 Bookmarks
 · 
155 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Our purpose was to investigate the utility of superparamagnetic iron-oxide nanoparticles (SPIO) as a blood-pooling contrast agent at magnetic resonance imaging (MRI). Materials and methods We studied four contrast agents: carboxymethyl-diethylaminoethyl dextran magnetite SPIO (CMEADM-S, diameter 54 nm), negatively charged CMEADM ultrasmall SPIO (CMEADM-U, 32 nm), alkali-treated dextran magnetite SPIO (ATDM-S, 55 nm), and ATDM ultrasmall SPIO (ATDM-U, 28 nm) carrying a neutral charge. Each contrast agent (80 μmol/kg) was injected intraperitoneally into apolipoprotein E (apoE) mice and the tissue iron concentration was measured 30-, 60-, 180-, and 300-min later by nuclear MR. For MR angiographic (MRA) evaluation, we injected the agents into the auricular vein of four groups of 15 rabbits. Immediately and 30-, 60-, 180-, and 300-min later, three rabbits from each group were subjected to MRI. The organ/background signal ratio (SR) was calculated. Statistical analyses were performed with Tukey’s honestly significant difference (HSD) test. Results At 60 and 180 min, blood-iron concentration of CMEADM-U was significantly different from other contrast agents. In the abdominal aorta and inferior vena cava, SR of CMEADM-U was higher at 180 and 300 min than of the other contrast agents. In the thoracic aorta, there was no difference in SR at 300 min between CMEADM-U and CMEADM-S. Conclusion Negatively charged SPIO nanoparticles may be useful as a blood-pooling contrast agent.
    Japanese journal of radiology 09/2012; 30(10). · 0.74 Impact Factor

Similar Publications