Hepatocellular carcinoma with marginal superparamagnetic iron oxide uptake on T2*-weighted magnetic resonance imaging: Histopathologic correlation

Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
European journal of radiology (Impact Factor: 2.37). 12/2011; 80(3):e293-8. DOI: 10.1016/j.ejrad.2010.12.078
Source: PubMed


To evaluate the characteristics of hepatocellular carcinomas (HCCs) with marginal superparamagnetic iron oxide (SPIO) uptake on T2*-weighted MRI.
The study group consisted of 73 patients with 83 surgically resected HCCs. Preoperative SPIO-enhanced MRI studies were retrospectively reviewed. Marginal SPIO uptake was considered positive if a rim-like or band-like low intensity area was present on SPIO-enhanced T2*-weighted images. The prevalence of marginal SPIO uptake was evaluated. Pathological specimens with hematoxylin and eosin staining and immunohistochemical staining of CD68 were reviewed in HCCs with marginal SPIO uptake and 33 HCCs without marginal SPIO uptake (control group).
Ten of 83 (12%) HCCs showed marginal SPIO uptake. All HCCs were hypervascular, and only one nodule showed a nodule-in-nodule appearance on imaging findings. The pathology specimens suggested possible causes of marginal SPIO uptake, including marginal macrophage infiltration in moderately or poorly differentiated HCC (n=4), residual normal hepatic tissue at the marginal area of confluent multinodular or single nodular with extranodular growth type HCC (n=3), and a well-differentiated HCC component in nodule-in-nodule type HCC (n=3). Marginal macrophage infiltration was not seen in the control group.
SPIO-enhanced MRI may be able to demonstrate marginal macrophage infiltration in HCC.

20 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Our purpose was to investigate the utility of superparamagnetic iron-oxide nanoparticles (SPIO) as a blood-pooling contrast agent at magnetic resonance imaging (MRI). Materials and methods We studied four contrast agents: carboxymethyl-diethylaminoethyl dextran magnetite SPIO (CMEADM-S, diameter 54 nm), negatively charged CMEADM ultrasmall SPIO (CMEADM-U, 32 nm), alkali-treated dextran magnetite SPIO (ATDM-S, 55 nm), and ATDM ultrasmall SPIO (ATDM-U, 28 nm) carrying a neutral charge. Each contrast agent (80 μmol/kg) was injected intraperitoneally into apolipoprotein E (apoE) mice and the tissue iron concentration was measured 30-, 60-, 180-, and 300-min later by nuclear MR. For MR angiographic (MRA) evaluation, we injected the agents into the auricular vein of four groups of 15 rabbits. Immediately and 30-, 60-, 180-, and 300-min later, three rabbits from each group were subjected to MRI. The organ/background signal ratio (SR) was calculated. Statistical analyses were performed with Tukey’s honestly significant difference (HSD) test. Results At 60 and 180 min, blood-iron concentration of CMEADM-U was significantly different from other contrast agents. In the abdominal aorta and inferior vena cava, SR of CMEADM-U was higher at 180 and 300 min than of the other contrast agents. In the thoracic aorta, there was no difference in SR at 300 min between CMEADM-U and CMEADM-S. Conclusion Negatively charged SPIO nanoparticles may be useful as a blood-pooling contrast agent.
    Japanese journal of radiology 09/2012; 30(10). DOI:10.1007/s11604-012-0133-0 · 0.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron oxide (IO) nanoparticles hold great promise as diagnostic and therapeutic agents in oncology. Their intrinsic physical properties make IO nanoparticles particularly interesting for simultaneous drug delivery, molecular imaging, and applications such as localized hyperthermia. Multiple non-targeted IO nanoparticle preparations have entered clinical trials, but more exciting, new tumor-targeted IO nanoparticle preparations are currently being tested in preclinical settings. This paper will analyze the challenges faced by this new theranostic modality, with a specific focus on the interactions of IO nanoparticles with the innate and adaptive immune systems, and their effect on nanoparticle biodistribution and tumor targeting. Next, we will review the critical need for innovative surface chemistry solutions and strategies to overcome the immune interactions that prevent existing tumor-targeted IO preparations from entering clinical trials. Finally, we will provide an outlook for the future role of IO nanoparticles in oncology, which have the promise of becoming significant contributors to improved diagnosis and treatment of cancer patients.
    Current pharmaceutical design 04/2013; 19(37). DOI:10.2174/13816128113199990409 · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Development of non-invasive assay for the accurate diagnosis of progressive liver diseases (e.g., fatty liver and hepatocellular carcinoma (HCC)) is of great clinical significance and remains to be a big challenge. Herein, we reported the synthesis of strawberry-like Fe3O4-Au hybrid nanoparticles at room temperature that simultaneously exhibited fluorescence, enhanced X-ray attenuation, and magnetic properties. The results of in vitro fluorescence assay showed that the nanoparticles had significant photo-stability and could avoid the endosome degradation in cells. The in vivo imaging of normal mice demonstrated that the Fe3O4-Au nanoparticles provided 34.61-fold contrast enhancement under magnetic resonance (MR) guidance 15 min post the administration. Computed tomography (CT) measurements showed that the highest Hounsfield Unit (HU) was 174 at 30 min post the injection of Fe3O4-Au nanoparticles. In vivo performance of the Fe3O4-Au nanoparticles was further evaluated in rat models bearing three different liver diseases. For the fatty liver model, nearly homogeneous contrast enhancement was observed under both MR (highest contrast ratio 47.33) and CT (from 19 HU to 72 HU) guidances without the occurrences of focal nodules or dysfunction. For the cirrhotic liver and HCC, pronounced enhancement under MR and CT guidance could be seen in liver parenchyma with highlighted lesions after Fe3O4-Au injection. Furthermore, pathological, hematological and biochemical analysis revealed the absence of acute and chronic toxicity, confirming the biocompatibility of our platform for in vivo applications. Collectively, These Fe3O4-Au nanoparticles showed great promise as a candidate for multi-modality bio-imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Biomaterials 05/2015; 51. DOI:10.1016/j.biomaterials.2015.02.019 · 8.56 Impact Factor

Similar Publications