Article

Caffeine enhances osteoclast differentiation from bone marrow hematopoietic cells and reduces bone mineral density in growing rats.

Institute of Toxicology, National Taiwan University, Taipei, Taiwan.
Journal of Orthopaedic Research (Impact Factor: 2.88). 01/2011; 29(6):954-60. DOI: 10.1002/jor.21326
Source: PubMed

ABSTRACT Caffeine-containing beverage consumption has been associated with low bone mass and increased fracture risk in some, but not most, observational studies. The effects of caffeine on bone metabolism are still controversial. We investigated the effects of caffeine on the differentiation of bone progenitor cells and bone mineral density (BMD) by in vitro and in vivo experiments. Low-concentration caffeine (0.005-0.1 mM) did not affect the bone marrow cell viability and alkaline phosphatase activity during osteoblast differentiation from bone marrow stromal cells, but it effectively enhanced the osteoclastogenesis from bone marrow hematopoietic cells and the bone resorption activity by pit formation assay. Moreover, caffeine effectively enhanced the receptor activator of NF-κB ligand (RANKL), but reduced the osteoprotegerin protein expressions in osteoblast MC3T3-E1 cells. Caffeine could also increase the cyclooxygenase-2 (COX-2) protein expression and prostaglandin (PG)E(2) production in cultured neonatal mouse calvariae. In animal study, BMD in lumbar vertebra, femur, or tibia was significantly lowered in growing rats supplemented with 0.2% caffeine in diets for 20 weeks compared with the control group. The calcium contents in tibia and femur of caffeine-treated rats were also lower than that in the control group. The osteoclastogenesis of bone marrow cells isolated from caffeine-treated rats was markedly enhanced as compared with the control group. Taken together, these results suggest that caffeine may reduce BMD in growing rats through the enhancement in osteoclastogenesis. Caffeine may possess the ability to enhance a COX-2/PGE(2) -regulated RANKL-mediated osteoclastogenesis.

1 Bookmark
 · 
98 Views

Full-text

Download
3 Downloads

Similar Publications