Mesothelium of the murine allantois exhibits distinct regional properties

Department of Anatomy, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin 53706, USA.
Journal of Morphology (Impact Factor: 1.55). 05/2011; 272(5):536-56. DOI: 10.1002/jmor.10928
Source: PubMed

ABSTRACT The rodent allantois is thought to be unique amongst mammals in not having an endodermal component. Here, we have investigated the mesothelium, or outer surface, of murine umbilical precursor tissue, the allantois (∼7.25-8.5 days postcoitum, dpc) to discover whether it exhibits the properties of an epithelium. A combination of morphology, challenge with biotinylated dextran amines (BDAs), and immunohistochemistry revealed that the mesothelium of the mouse allantois exhibits distinct regional properties. By headfold stages (∼7.75-8.0 dpc), distal mesothelium was generally squamous in shape, and highly permeable to BDA challenge, whereas ventral proximal mesothelium, referred to as "ventral cuboidal mesothelium" (VCM) for the characteristic cuboidal shape of its cells, was relatively impermeable. Although "dorsal cuboidal mesothelium" (DCM) resembled the VCM in cell shape, its permeability to BDA was intermediate between the other two regions. Results of immunostaining for Zonula Occludens-1 (ZO-1) and Epithelial-cadherin (E-cadherin), together with transmission electron microscopy (TEM), suggested that impermeability in the VCM may be due to greater cellular contact area between cells and close packing rather than to maturity of tight junctions, the latter of which, by comparison with the visceral yolk sac, appeared to be rare or absent from the allantoic surface. Both VCM and DCM exhibited an ultrastructure more favorable for protein synthesis than did the distal squamous mesothelium; however, at most stages, VCM exhibited robust afadin (AF-6), whereas the DCM uniquely contained alpha-4-integrin. These observations demonstrate that the allantoic mesothelium is not a conventional epithelium but possesses regional ultrastructural, functional and molecular differences that may play important roles in the correct deployment of the umbilical cord and its associated vascular, hematopoietic, and other cell types.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants have developed elaborate detoxification mechanisms to cope with a large number of potentially toxic compounds, which include exogenous xenobiotics and endogenous metabolites, especially secondary metabolites. After enzymatic modification or synthesis, such compounds are transported and accumulated in apoplastic cell walls or central vacuoles in plant cells. Membrane transporters actively catalyze translocation of a diverse range of these compounds across various membranes within cells. Biochemical, molecular, and genetic studies have begun to reveal functions of a handful of ATP-binding cassette and multidrug and toxic compound extrusion family transporters engaged in transport of organic xenobiotics, heavy metals, metalloids, aluminum, alkaloids, flavonoids, terpenoids, terpenoid-derived phytohormones, cuticle lipids, and monolignols in plants. This detoxification versatility and metabolic diversity may underlie the functional diversification in plants of these families of transporters, which are largely involved in multidrug resistance in microorganisms and animals.
    International review of cell and molecular biology 01/2014; 309C:303-346. DOI:10.1016/B978-0-12-800255-1.00006-5 · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current dogma is that mouse primordial germ cells (PGCs) segregate within the allantois, or source of the umbilical cord, and translocate to the gonads, differentiating there into sperm and eggs. In light of emerging data on the posterior embryonic-extraembryonic interface, and the poorly studied but vital fetal-umbilical connection, we have reviewed the past century of experiments on mammalian PGCs and their relation to the allantois. We demonstrate that, despite best efforts and valuable data on the pluripotent state, what is and is not a PGC in vivo is obscure. Furthermore, sufficient experimental evidence has yet to be provided either for an extragonadal origin of mammalian PGCs or for their segregation within the posterior region. Rather, most evidence points to an alternative hypothesis that PGCs in the mouse allantois are part of a stem/progenitor cell pool that exhibits all known PGC "markers" and that builds/reinforces the fetal-umbilical interface, common to amniotes. We conclude by suggesting experiments to distinguish the mammalian germ line from the soma.
    International review of cell and molecular biology 01/2014; 309C:1-57. DOI:10.1016/B978-0-12-800255-1.00001-6 · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mice and humans the X-chromosomal porcupine homolog (Porcn) gene is required for the acylation and secretion of all 19 Wnt ligands and thus represents a bottleneck for all Wnt signaling. We have generated a mouse line carrying a floxed allele for Porcn and used zygotic, oocyte-specific and visceral endoderm-specific deletions to investigate embryonic and extra-embryonic requirements for Wnt ligand secretion. We show that there is no requirement for Porcn-dependent secretion of Wnt ligands during preimplantation development of the mouse embryo. Porcn-dependent Wnts are first required for the initiation of gastrulation, where Porcn function is required in the epiblast but not the visceral endoderm. Heterozygous female embryos, which are mutant in both trophoblast and visceral endoderm due to imprinted X chromosome inactivation, complete gastrulation but display chorio-allantoic fusion defects similar to Wnt7b mutants. Our studies highlight the importance of Wnt3 and Wnt7b for embryonic and placental development but suggest that endogenous Porcn-dependent Wnt secretion does not play an essential role in either implantation or blastocyst lineage specification.
    Development 06/2013; 140(14). DOI:10.1242/dev.094458 · 6.27 Impact Factor