Article

Natural variation in decision-making behavior in Drosophila melanogaster.

Ecology, Evolution, and Marine Biology Department, University of California Santa Barbara, Santa Barbara, California, United States of America.
PLoS ONE (Impact Factor: 3.53). 01/2011; 6(1):e16436. DOI: 10.1371/journal.pone.0016436
Source: PubMed

ABSTRACT There has been considerable recent interest in using Drosophila melanogaster to investigate the molecular basis of decision-making behavior. Deciding where to place eggs is likely one of the most important decisions for a female fly, as eggs are vulnerable and larvae have limited motility. Here, we show that many natural genotypes of D. melanogaster prefer to lay eggs near nutritious substrate, rather than in nutritious substrate. These preferences are highly polymorphic in both degree and direction, with considerable heritability (0.488) and evolvability.Relative preferences are modulated by the distance between options and the overall concentration of ethanol, suggesting Drosophila integrate many environmental factors when making oviposition decisions. As oviposition-related decisions can be efficiently assessed by simply counting eggs, oviposition behavior is an excellent model for understanding information processing in insects. Associating natural genetic polymorphisms with decision-making variation will shed light on the molecular basis of host choice behavior, the evolutionary maintenance of genetic variation, and the mechanistic nature of preference variation in general.

0 Bookmarks
 · 
84 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies.
    The ISME Journal 01/2012; 6(7):1356-66. · 8.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic variation can have important consequences for populations: high population genetic diversity is typically associated with ecological success. Some mechanisms that account for these benefits assume that local social groups with high genetic diversity are more successful than low-diversity groups. At the same time, active decision-making by individuals can influence group genetic diversity. Here, we examine how maternal decisions that determine group genetic diversity influence the viability of Drosophila melanogaster larvae. Our groups contained wild-type larvae, whose genetic diversity we manipulated, and genetically marked 'tester' larvae, whose genotype and frequency were identical in all trials. We measured wild-type and tester viability for each group. Surprisingly, the viability of wild-type larvae was neither augmented nor reduced when group genetic diversity was altered. However, the viability of the tester genotype was substantially depressed in large, high-diversity groups. Further, not all high-diversity groups produced this effect: certain combinations of wild-type genotypes were deleterious to tester viability, while other groups of the same diversity-but containing different wild-type genotypes-were not deleterious. These deleterious combinations of wild-type genotypes could not be predicted by observing the performance of the same tester and wild-type genotypes in low-diversity groups. Taken together, these results suggest that nonadditive interactions among genotypes, rather than genetic diversity per se, account for between-group differences in viability in D. melanogaster and that predicting the consequences of genetic diversity at the population level may not be straightforward.
    Molecular Ecology 03/2012; 21(9):2270-81. · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intra-genotypic variability (IGV) occurs when individuals with the same genotype, raised in the same environment and then tested under the same conditions, express different trait values. Game theoretical and bet-hedging models have suggested two ways that a single genotype might generate variable behaviour when behavioural variation is discrete rather than continuous: behavioural polyphenism (a genotype produces different types of individuals, each of which consistently expresses a different type of behaviour) or stochastic variability (a genotype produces one type of individual who randomly expresses different types of behaviour over time). We first demonstrated significant differences across 14 natural genotypes of male Drosophila melanogaster in the variability (as measured by entropy) of their microhabitat choice, in an experiment in which each fly was allowed free access to four different types of habitat. We then tested four hypotheses about ways that within-individual variability might contribute to differences across genotypes in the variability of microhabitat choice. There was no empirical support for three hypotheses (behavioural polymorphism, consistent choice, or time-based choice), nor could our results be attributed to genotypic differences in activity levels. The stochastic variability hypothesis accurately predicted the slope and the intercept of the relationship across genotypes between entropy at the individual level and entropy at the genotype level. However, our initial version of the stochastic model slightly but significantly overestimated the values of individual entropy for each genotype, pointing to specific assumptions of this model that might need to be adjusted in future studies of the IGV of microhabitat choice. This is among a handful of recent studies to document genotypic differences in behavioural IGV, and the first to explore ways that genotypic differences in within-individual variability might contribute to differences among genotypes in the predictability of their behaviour.
    Animal Behaviour 09/2013; 86(3):641-649. · 3.07 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from