Article

Killing of targets by CD8 T cells in the mouse spleen follows the law of mass action.

Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America.
PLoS ONE (Impact Factor: 3.53). 01/2011; 6(1):e15959. DOI: 10.1371/journal.pone.0015959
Source: PubMed

ABSTRACT It has been difficult to correlate the quality of CD8 T cell responses with protection against viral infections. To investigate the relationship between efficacy and magnitude of T cell responses, we quantify the rate at which individual CD8 effector and memory T cells kill target cells in the mouse spleen. Using mathematical modeling, we analyze recent data on the loss of target cells pulsed with three different peptides from the mouse lymphocytic choriomeningitis virus (LCMV) in mouse spleens with varying numbers of epitope-specific CD8 T cells. We find that the killing of targets follows the law of mass-action, i.e., the death rate of individual target cells remains proportional to the frequency (or the total number) of specific CD8 T cells in the spleen despite the fact that effector cell densities and effector to target ratios vary about a 1000-fold. The killing rate of LCMV-specific CD8 T cells is largely independent of T cell specificity and differentiation stage. Our results thus allow one to calculate the critical T cell concentration at which growth of a virus with a given replication rate can be prevented from the start of infection by memory CD8 T cell response.

0 Bookmarks
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytotoxic T lymphocytes (CTLs) kill virus-infected cells and tumor cells, and play a critical role in immune protection. Our knowledge of how the CTL killing efficiency varies with CTL and target cell numbers is limited. Here, we simulate a region of lymphoid tissue using a cellular Potts model to characterize the functional response of CTL killing of target cells, and find that the total killing rate saturates both with the CTL and the target cell densities. The relative saturation in CTL and target cell densities is determined by whether a CTL can kill multiple target cells at the same time, and whether a target cell can be killed by many CTLs together. We find that all the studied regimes can be well described by a double-saturation (DS) function with two different saturation constants. We show that this DS model can be mechanistically derived for the cases where target cells are killed by a single CTL. For the other cases, a biological interpretation of the parameters is still possible. Our results imply that this DS function can be used as a tool to predict the cellular interactions in cytotoxicity data.
    Biophysical Journal 04/2014; 106(8):1780-91. · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity.
    PLoS Computational Biology 09/2014; 10(9):e1003805. · 4.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The CD8+ cytotoxic T lymphocyte (CTL) response is an important defence against viral invasion. Although CTL-mediated cytotoxicity has been widely studied for many years, the rate at which virus-infected cells are killed in vivo by the CTL response is poorly understood. To date the rate of CTL killing in vivo has been estimated for three virus infections but the estimates differ considerably, and killing of HIV-1-infected cells was unexpectedly low. This raises questions about the typical anti-viral capability of CTL and whether CTL killing is abnormally low in HIV-1. We estimated the rate of killing of infected cells by CD8+ T cells in two distinct persistent virus infections: sheep infected with Bovine Leukemia Virus (BLV) and humans infected with Human T Lymphotropic Virus type 1 (HTLV-1) which together with existing data allows us to study a total of five viruses in parallel. Although both BLV and HTLV-1 infection are characterised by large expansions of chronically activated CTL with immediate effector function ex vivo and no evidence of overt immune suppression, our estimates are at the lower end of the reported range. This enables us to put current estimates into perspective and shows that CTL killing of HIV-infected cells may not be atypically low. The estimates at the higher end of the range are obtained in more manipulated systems and may thus represent the potential rather than the realised CTL efficiency.
    PLoS Computational Biology 04/2014; 10(4):e1003534. · 4.83 Impact Factor

Full-text (2 Sources)

Download
47 Downloads
Available from
May 19, 2014