Role of Bcr1-Activated Genes Hwp1 and Hyr1 in Candida Albicans Oral Mucosal Biofilms and Neutrophil Evasion

Department of Microbiology, University of Texas, Houston, Texas, United States of America.
PLoS ONE (Impact Factor: 3.53). 01/2011; 6(1):e16218. DOI: 10.1371/journal.pone.0016218
Source: PubMed

ABSTRACT Candida albicans triggers recurrent infections of the oropharyngeal mucosa that result from biofilm growth. Prior studies have indicated that the transcription factor Bcr1 regulates biofilm formation in a catheter model, both in vitro and in vivo. We thus hypothesized that Bcr1 plays similar roles in the formation of oral mucosal biofilms and tested this hypothesis in a mouse model of oral infection. We found that a bcr1/bcr1 mutant did not form significant biofilm on the tongues of immunocompromised mice, in contrast to reference and reconstituted strains that formed pseudomembranes covering most of the tongue dorsal surface. Overexpression of HWP1, which specifies an epithelial adhesin that is under the transcriptional control of Bcr1, partly but significantly rescued the bcr1/bcr1 biofilm phenotype in vivo. Since HWP1 overexpression only partly reversed the biofilm phenotype, we investigated whether additional mechanisms, besides adhesin down-regulation, were responsible for the reduced virulence of this mutant. We discovered that the bcr1/bcr1 mutant was more susceptible to damage by human leukocytes when grown on plastic or on the surface of a human oral mucosa tissue analogue. Overexpression of HYR1, but not HWP1, significantly rescued this phenotype. Furthermore a hyr1/hyr1 mutant had significantly attenuated virulence in the mouse oral biofilm model of infection. These discoveries show that Bcr1 is critical for mucosal biofilm infection via regulation of epithelial cell adhesin and neutrophil function.

Download full-text


Available from: ZHIHONG XIE, Apr 29, 2014
  • Source
    • "Although Als3p is clearly important, it is not the sole determinant of biofilm formation. An als3D mutant is able to form an extensive biofilm in vitro under hypoxic conditions (Stichternoth & Ernst, 2009) and in vivo using a rat venous catheter model (Nobile et al., 2006), whilst overexpression of HWP1, but not ALS3, effectively restores the ability of a bcr1D null strain to form biofilms on murine mucosal surfaces (Dwivedi et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of specific proteins, including Ece1p, Hwp1p and Als3p, distinguishes the Candida albicans hyphal cell wall from that of yeast-form cells. These proteins are thought to be important for the ability of C. albicans cells to adhere to living and non-living surfaces and for the cell-to-cell adhesion necessary for biofilm formation, and also to be pivotal in mediating C. albicans interactions with endothelial cells. Using an in vitro flow adhesion assay, we previously observed that yeast cells bind in greater numbers to human microvascular endothelial cells than do hyphal or pseudohyphal cells. This is consistent with previous observations that, in a murine model of disseminated candidiasis, cells locked in the yeast form can efficiently escape the bloodstream and invade host tissues. To more precisely explore the role of Als3p in adhesion and virulence, we deleted both copies of ALS3 in a wild-type C. albicans strain. In agreement with previous studies, our als3Δ null strain formed hyphae normally but was defective in biofilm formation. Whilst ALS3 was not expressed in our null strain, hypha-specific genes such as ECE1 and HWP1 were still induced appropriately. Both the yeast form and the hyphal form of the als3Δ strain adhered to microvascular endothelial cells to the same extent as a wild-type strain under conditions of flow, indicating that Als3p is not a significant mediator of the initial interaction between fungal cells and the endothelium. Finally, in a murine model of haematogenously disseminated candidiasis the mutant als3Δ remained as virulent as the wild-type parent strain.
    Microbiology 03/2011; 157(Pt 6):1806-15. DOI:10.1099/mic.0.046326-0 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida albicans interactions with epithelial cells are critical for commensal growth, fungal pathogenicity and host defence. This review will outline our current understanding of C. albicans-epithelial interactions and will discuss how this may lead to the induction of a protective mucosal immune response.
    Microbes and Infection 07/2011; 13(12-13):963-76. DOI:10.1016/j.micinf.2011.06.009 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of C. albicans biofilm formation under diverse conditions, though the most relevant Bcr1 target genes can vary with the biofilm niche. An important determinant of mucosal biofilm formation is the interaction with host defenses. Finally, studies of interactions between bacterial species and C. albicans provide insight into the communication mechanisms that endow polymicrobial biofilms with unique properties.
    Current opinion in microbiology 08/2011; 14(4):380-5. DOI:10.1016/j.mib.2011.06.001 · 7.22 Impact Factor
Show more