Article

CCL25/CCR9 Interactions Regulate Large Intestinal Inflammation in a Murine Model of Acute Colitis

Division of Gastroenterology and Nutrition, Children's Hospital Boston, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America.
PLoS ONE (Impact Factor: 3.53). 01/2011; 6(1):e16442. DOI: 10.1371/journal.pone.0016442
Source: PubMed

ABSTRACT CCL25/CCR9 is a non-promiscuous chemokine/receptor pair and a key regulator of leukocyte migration to the small intestine. We investigated here whether CCL25/CCR9 interactions also play a role in the regulation of inflammatory responses in the large intestine.
Acute inflammation and recovery in wild-type (WT) and CCR9(-/-) mice was studied in a model of dextran sulfate sodium (DSS)-induced colitis. Distribution studies and phenotypic characterization of dendritic cell subsets and macrophage were performed by flow cytometry. Inflammatory bowel disease (IBD) scores were assessed and expression of inflammatory cytokines was studied at the mRNA and the protein level.
CCL25 and CCR9 are both expressed in the large intestine and are upregulated during DSS colitis. CCR9(-/-) mice are more susceptible to DSS colitis than WT littermate controls as shown by higher mortality, increased IBD score and delayed recovery. During recovery, the CCR9(-/-) colonic mucosa is characterized by the accumulation of activated macrophages and elevated levels of Th1/Th17 inflammatory cytokines. Activated plasmacytoid dendritic cells (DCs) accumulate in mesenteric lymph nodes (MLNs) of CCR9(-/-) animals, altering the local ratio of DC subsets. Upon re-stimulation, T cells isolated from these MLNs secrete significantly higher levels of TNFα, IFNγ, IL2, IL-6 and IL-17A while down modulating IL-10 production.
Our results demonstrate that CCL25/CCR9 interactions regulate inflammatory immune responses in the large intestinal mucosa by balancing different subsets of dendritic cells. These findings have important implications for the use of CCR9-inhibitors in therapy of human IBD as they indicate a potential risk for patients with large intestinal inflammation.

Full-text

Available from: Edda Fiebiger, Jun 09, 2015
0 Followers
 · 
143 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory Bowel Disease (IBD), mainly comprising Crohn's disease (CD) and ulcerative colitis (UC), is a chronic condition that primarily affects the intestine and is characterized by leukocytic infiltration. Blocking the migration of leukocytes from the circulation is therefore a reasonable therapeutic goal. Recent clinical trials using this approach have shown promise, with the monoclonal antibody to α4β7 integrin, vedolizumab, and previously with the monoclonal antibody to the α4 subunit, natalizumab. Directly targeting the subset of α4β7 expressing cells that co-express CC chemokine receptor 9 (CCR9), using the orally administered antagonist, CCX282-B, also known as vercirnon, has also been evaluated in Phase II and III trials that have produced mixed results. Although CCX282-B showed efficacy in inducing response in active CD in early studies, this was not confirmed in a Phase III study. CCX282-B was also more effective than placebo in maintaining remission, and this result has yet to be confirmed in Phase III. The efficacy of blocking CCR9 in UC, where vedolizumab was effective, has not been tested. The prospect of targeting CCR9 in IBD remains attractive. Much of the local accumulation of inflammatory cells in the intestine arises from migration rather than local proliferation and genetic and pharmacological targeting of CCR9 or its ligand in preclinical models that mimic UC and CD ameliorate inflammation in some cases. Furthermore, binding of chemokine ligands to receptor is a critical step in activating integrin binding, so there is a potential for synergistic action between integrin and chemokine antagonists. CCR9 is expressed on a smaller proportion of circulating cells than α4β7 integrin, which may offer greater specificity of effect, particularly in long term use. Furthermore, while α4β7 is widely expressed on T and B cell subsets, CCR9 is mainly expressed on effector memory Th1 cells. Indications for the use of intestine-specific integrin and chemokine receptor targeting may also extend beyond IBD, to include, for example, postoperative ileus, and primary sclerosing cholangitis.
    Clinical and Experimental Gastroenterology 01/2015; 8:119. DOI:10.2147/CEG.S48305
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin A plays an essential role in the maintenance of gut homeostasis but its interplay with chemokines has not been explored so far. Using an in vitro model system we studied the effects of human colonic epithelial cells (Caco2, HT-29, and HCT116) derived inflammatory stimuli on monocyte-derived dendritic cells and macrophages. Unstimulated Caco2 and HT-29 cells secreted CCL19, CCL21, and CCL22 chemokines, which could attract dendritic cells and macrophages and induced CCR7 receptor up-regulation by retinoic-acid resulting in dendritic cell migration. The chemokines Mk, CXCL16, and CXCL7 were secreted by all the 3 cell lines tested, and upon stimulation by IL-1β or TNF-α this effect was inhibited by ATRA but had no impact on CXCL1, CXCL8, and CCL20 secretion in response to IL-1β. In the presence of ATRA the supernatants of these cells induced CD103 expression on monocyte-derived dendritic cells and when conditioned by ATRA and cocultured with CD4+ T-lymphocytes they reduced the proportion of Th17 T-cells. However, in the macrophage-T-cell cocultures the number of these effector T-cells was increased. Thus cytokine-activated colonic epithelial cells trigger the secretion of distinct combinations of chemokines depending on the proinflammatory stimulus and are controlled by retinoic acid, which also governs dendritic cell and macrophage responses.
    Mediators of Inflammation 01/2015; 2015:1-14. DOI:10.1155/2015/579830 · 2.42 Impact Factor