Activation of hypoxia-inducible factor 1 in skeletal muscle cells after exposure to damaged muscle cell debris.

Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.
Shock (Augusta, Ga.) (Impact Factor: 2.73). 06/2011; 35(6):632-8. DOI: 10.1097/SHK.0b013e3182111f3d
Source: PubMed

ABSTRACT Skeletal muscle damage provokes complex repair mechanisms including recruitment of leukocytes as well as activation of myogenic precursor cells such as satellite cells. To study muscle cell repair mechanisms after muscle fiber damage, we used an in vitro model of scrape-injured myotubes. Exposing vital C2C12 myoblasts and myotubes to cell debris of damaged myotubes revealed mRNA upregulation of adrenomedullin (ADM), insulin-like growth factors 1 and 2, metallopeptidase 9, and monocyte chemoattractant protein11. When cell debris was treated with ultrasound, frozen in liquid nitrogen, or heat inactivated before addition to C2C12 cells, gene expression was drastically reduced or completely absent. Moreover, incubations of myoblasts with debris separated by transwell inserts indicated that direct cell contact is required for gene induction. Incubation with albumin and PolyIC ruled out that ADM induction by cell debris simply results from increased protein or nucleic acid concentrations in the supernatant. Because the genes, which were upregulated by cell debris, are potential target genes of hypoxia-inducible factor (HIF), cells were analyzed for HIF-1α expression. Western blot analysis showed accumulation of the α-subunit upon contact to cell debris. Knockdown of HIF-1α in C2C12 cells proved that activation of HIF-1 in response to cell debris was responsible for upregulating ADM and monocyte chemoattractant protein 1. Furthermore, by incubating cells on gas-permeable culture dishes, we excluded a reduced pericellular pO2 induced by cell debris as the cause for ADM upregulation. Our data suggest that damaged myofibers activate HIF-1 in neighboring myotubes and precursor myoblasts by direct contact, concomitantly upregulating factors necessary for angiogenesis, tissue regeneration, and phagocyte recruitment.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle regeneration is a multifaceted process requiring the spatial and temporal coordination of myogenesis as well as angiogenesis. Hepatocyte growth factor (HGF) plays a pivotal role in myogenesis by activating satellite cells (SC) in regenerating muscle and likely plays a role as a contributor to revascularization. Moreover, repair of a functional blood supply is critical to ameliorate tissue ischemia and restore skeletal muscle function, however effects of hypoxia on satellite cell-mediated angiogenesis remain unclear. The objective of this study was to examine the role of HGF and effect of hypoxia on the capacity of satellite cells to promote angiogenesis. To characterize the role of HGF, a microvascular fragment (MVF) culture model coupled with satellite cell conditioned media (CM) was employed. The activity of HGF was specifically blocked in SC CM reducing sprout length compared to control CM. In contrast, MVF sprout number did not differ between control or HGF-deficient SC CM media. Next, we cultured MVF in the presence of CM from satellite cells exposed to normoxic (20% O2 ) or hypoxic (1% O2 ) conditions. Hypoxic CM recapitulated a MVF angiogenic response identical to HGF deficient satellite cell CM. Hypoxic conditions increased satellite cell HIF-1α protein abundance and VEGF mRNA abundance but decreased HGF mRNA abundance compared to normoxic satellite cells. Consistent with reduced HGF gene expression, HGF promoter activity decreased during hypoxia. Taken together, this data indicates that hypoxic modulation of satellite cell-mediated angiogenesis involves a reduction in satellite cell HGF expression. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 05/2014; 229(5). DOI:10.1002/jcp.24479 · 3.87 Impact Factor
  • Source
    Journal of Cellular Physiology 10/2013; · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The outstanding regeneration ability of skeletal muscle is based on stem cells that become activated and develop to myoblasts after myotrauma. Proliferation and growth of myoblasts result in self-renewal of skeletal muscle. In this article, we show that myotrauma causes a hypoxic microenvironment leading to accumulation of the transcription factor hypoxia-inducible factor-1 (HIF-1) in skeletal muscle cells, as well as invading myeloid cells. To evaluate the impact of HIF-1 in skeletal muscle injury and repair, we examined mice with a conditional HIF-1α knockout targeted to skeletal muscle or myeloid cells in a model of soft tissue trauma. No differences in acute trauma size were detected between control and HIF-1α knockout mice. However, muscles of myeloid HIF-1α knockout mice showed a significant delay in myoblast proliferation and growth of regenerating myofibers, in association with decreased expression of cyclooxygenase-2 in HIF-1α-deficient myeloid cells. Moreover, the removal of necrotic cell debris and the regeneration of endothelial cell structure were impaired in myeloid HIF-1α knockout mice that showed delayed invasion of macrophages to the injury site. Our findings for the first time, to our knowledge, demonstrate that myeloid HIF-1α is required for adequate skeletal muscle regeneration.
    The Journal of Immunology 05/2013; 191(1). DOI:10.4049/jimmunol.1103779 · 5.36 Impact Factor


Available from
May 31, 2014