Article

Trial of a CAD/CAM system for fabricating complete dentures.

Complete Denture Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
Dental Materials Journal (Impact Factor: 0.81). 01/2011; 30(1):93-6.
Source: PubMed

ABSTRACT The purpose of this study was to evaluate the fabrication of a complete denture using a CAD/CAM system. Cone beam CT was used to measure the complete denture and the artificial teeth. After a 3D complete denture image was structured using 3D CAD software, we factored out the artificial teeth and obtained a 3D denture base image. A machining center cut an acrylic resin block, and fabricated an acrylic complete denture base. The artificial teeth were bonded to the cut denture base using resin cement. A 3D digitizer digitized the fabricated acrylic denture. We measured the deviations between the master 3D complete denture image and the 3D data of the fabricated acrylic denture. The average deviations from the master 3D image were 0.50 mm for the occlusal surface. This present study indicates that it is possible to fabricate a complete denture using a CAD/CAM system.

1 Bookmark
 · 
511 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new trial method for complete dentures using rapid prototyping (RP) was compared with the conventional method. Wax dentures were fabricated for 10 edentulous patients. Cone-beam CT was used to scan the wax dentures. Using 3D computer-aided design software, seven 3D denture images with different artificial teeth arrangements were made and seven trial dentures per patient were fabricated accordingly. Two prosthodontists performed a denture try-in for one patient using both conventional and RP methods. The prosthodontists and patients rated satisfaction for both methods using a visual analogue scale. Satisfaction ratings with both conventional and RP methods were compared using the Wilcoxon signed-rank test. Regarding prosthodontist's ratings, esthetics and stability were rated significantly higher with the conventional method than with the RP method, whereas chair time was rated significantly longer with the RP method than with the conventional method. Although further improvements are needed, the trial method applying RP seems promising.
    Dental Materials Journal 02/2012; 31(1):40-6. · 0.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dentists have used rapid prototyping (RP) techniques in the fields of oral maxillofacial surgery simulation and implantology. With new research emerging for molding materials and the forming process of RP techniques, this method is becoming more attractive in dental prosthesis fabrication; however, few researchers have published material on the RP technology of prosthesis pattern fabrication. This article reviews and discusses the application of RP techniques for prosthodontics including: (1) fabrication of wax pattern for the dental prosthesis, (2) dental (facial) prosthesis mold (shell) fabrication, (3) dental metal prosthesis fabrication, and (4) zirconia prosthesis fabrication. Many people could benefit from this new technology through various forms of dental prosthesis production. Traditional prosthodontic practices could also be changed by RP techniques in the near future.
    Journal of Prosthodontics 07/2012; · 0.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, computer-aided design/computer-aided manufacturing (CAD/CAM) technology has been applied to the field of removable complete denture prosthodontics. We developed a system for fabricating complete dentures applying CAD/CAM technology. In this system, artificial teeth were bonded to the recesses of a milled denture base. However, the offset values needed for the recesses are not known. The purpose of the present study was to evaluate the accuracy of bonded artificial teeth positions in 0.00 (control), 0.10, 0.15, 0.20, and 0.25 mm offset recess groups. Four types of artificial teeth, upper left central incisor (UL1), upper left canine (UL3), upper left first premolar (UL4), and upper left first molar (UL6), were used. Each type of artificial tooth was arranged at regular intervals on the denture base model with the CAD software. These data were defined as the master data. The artificial teeth parts were subtracted from the denture base model by Boolean logic operations in order to make recesses, and the recesses were then offset in five values. Based on these denture base data, prepolymerized resin blocks were milled (n=3). After bonding artificial teeth on the milled denture base model, a cone beam computed tomography (CBCT) scan was performed to obtain scanned data. Deviations between the master data and the scanned data were calculated. Based on the results, the optimal offset values were found to be 0.15–0.25 mm for UL1, 0.15 and 0.25 mm for UL3, 0.25 mm for UL4, and 0.10–0.25 mm for UL6.
    Computers in Biology and Medicine. 01/2014;

Full-text (2 Sources)

View
48 Downloads
Available from
Jun 1, 2014