Article

IL-17A and TNF-α exert synergistic effects on expression of CXCL5 by alveolar type II cells in vivo and in vitro.

Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19014, USA.
The Journal of Immunology (Impact Factor: 5.36). 03/2011; 186(5):3197-205. DOI: 10.4049/jimmunol.1002016
Source: PubMed

ABSTRACT CXCL5, a member of the CXC family of chemokines, contributes to neutrophil recruitment during lung inflammation, but its regulation is poorly understood. Because the T cell-derived cytokine IL-17A enhances host defense by triggering production of chemokines, particularly in combination with TNF-α, we hypothesized that IL-17A would enhance TNF-α-induced expression of CXCL5. Intratracheal coadministration of IL-17A and TNF-α in mice induced production of CXCL1, CXCL2, and CXCL5, which was associated with increased neutrophil influx in the lung at 8 and 24 h. The synergistic effects of TNF-α and IL17A were greatly attenuated in Cxcl5(-/-) mice at 24 h, but not 8 h, after exposure, a time when CXCL5 expression was at its peak in wild-type mice. Bone marrow chimeras produced using Cxcl5(-/-) donors and recipients demonstrated that lung-resident cells were the source of CXCL5. Using differentiated alveolar epithelial type II (ATII) cells derived from human fetal lung, we found that IL-17A enhanced TNF-α-induced CXCL5 transcription and stabilized TNF-α-induced CXCL5 transcripts. Whereas expression of CXCL5 required activation of NF-κB, IL-17A did not increase TNF-α-induced NF-κB activation. Apical costimulation of IL-17A and TNF-α provoked apical secretion of CXCL5 by human ATII cells in a transwell system, whereas basolateral costimulation led to both apical and basolateral secretion of CXCL5. The observation that human ATII cells secrete CXCL5 in a polarized fashion may represent a mechanism to recruit neutrophils in host defense in a fashion that discriminates the site of initial injury.

Download full-text

Full-text

Available from: Linda Gonzales, Jul 06, 2015
0 Followers
 · 
165 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the anti-inflammatory effect of the crude hydroalcoholic extract (CHE) from the aerial parts of Croton antisyphiliticus, its fractions and isolated compounds derived from it on the mouse model of pleurisy induced by carrageenan. The aerial parts of C. antisyphiliticus were dried, macerated and extracted with ethanol to obtain the CHE, which was fractionated by liquid-liquid extraction using solvents with increasing polarity to obtain hexane (Hex), ethyl acetate (EA) and aqueous (Aq) fractions. Vitexin and quinic acid were isolated from Aq fraction. Capillary electrophoresis analysis, physical characteristics and spectral data produced by infrared (IR), nuclear magnetic resonance ((1)H and (13)C NMR) and mass spectrometry analyses were used to identify and elucidate the structure of the isolated compounds. The experimental model of pleurisy was induced in mice by a single intrapleural injection of carrageenan (1 %). Leukocytes, exudate concentrations, myeloperoxidase (MPO) and adenosine-deaminase (ADA) activities and nitrate/nitrite (NOx), tumor necrosis factor-α (TNF-α) and interleukin-17 (IL-17) levels were determined in the pleural fluid leakage at 4 h after pleurisy induction. Animals pre-treated with CHE, Hex, EA, Aq, vitexin and quinic acid exhibited decreases in leukocytes, exudate concentrations, MPO and ADA activities and NOx levels (p < 0.05). Also CHE, Hex, EA and vitexin but not quinic acid inhibited TNF-α and IL-17 levels (p < 0.05). C. antisyphiliticus caused anti-inflammatory effect by inhibiting the activated leukocytes, exudate concentrations, NOx, TNF-α, and IL-17 levels. The compounds vitexin and quinic acid may be responsible for this anti-inflammatory action.
    Inflammopharmacology 08/2013; DOI:10.1007/s10787-013-0184-6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alveolar epithelial cells (AECs) participate in the pathogenesis of pulmonary fibrosis, producing pro-inflammatory mediators and undergoing epithelial-to-mesenchymal transition (EMT). Herein, we demonstrated the critical role of Forkhead Box M1 (Foxm1) transcription factor in radiation-induced pulmonary fibrosis. Foxm1 was induced in AECs following lung irradiation. Transgenic expression of an activated Foxm1 transcript in AECs enhanced radiation-induced pneumonitis and pulmonary fibrosis, and increased the expression of IL-1β, Ccl2, Cxcl5, Snail1, Zeb1, Zeb2 and Foxf1. Conditional deletion of Foxm1 from respiratory epithelial cells decreased radiation-induced pulmonary fibrosis and prevented the increase in EMT-associated gene expression. siRNA-mediated inhibition of Foxm1 prevented TGF-β-induced EMT in vitro. Foxm1 bound to and increased promoter activity of the Snail1 gene, a critical transcriptional regulator of EMT. Expression of Snail1 restored TGF-β-induced loss of E-cadherin in Foxm1-deficient cells in vitro. Lineage-tracing studies demonstrated that Foxm1 increased EMT during radiation-induced pulmonary fibrosis in vivo. Foxm1 is required for radiation-induced pulmonary fibrosis by enhancing the expression of genes critical for lung inflammation and EMT.
    The EMBO Journal 01/2013; DOI:10.1038/emboj.2012.336
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liberation of damage-associated molecular patterns (DAMPs) following tissue injury and necrotic cell death leads to the induction of sterile inflammation. A hallmark of acute inflammation is the recruitment of neutrophils to injured tissues. This review focuses on the journey of neutrophils to sites of sterile inflammation and the cellular and molecular mechanisms that choreograph this complex voyage. We review the pathway of leukocyte recruitment, with emphasis on recent additions to our understanding of intravascular neutrophil migration. The contributions of various tissue-resident sentinel cell populations to the detection of danger signals (DAMPs) and coordination of neutrophil recruitment and migration are discussed. In addition, we highlight recent data on the control of neutrophil chemotaxis towards sites of sterile inflammation, including new insight into the temporal and spatial regulation of chemoattractant guidance signals that direct cell migration. Given that inappropriate neutrophilic inflammation is a cornerstone in the pathogenesis of many diseases, a complete understanding of the choreography of neutrophil recruitment to sites of sterile inflammation may uncover new avenues for therapeutic interventions to treat inflammatory pathologies.
    Journal of Molecular Medicine 07/2011; 89(11):1079-88. DOI:10.1007/s00109-011-0784-9