Article

Outgrowth of Drug-Resistant Carcinomas Expressing Markers of Tumor Aggression after Long-term T RI/II Kinase Inhibition with LY2109761

Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA.
Cancer Research (Impact Factor: 9.28). 03/2011; 71(6):2339-49. DOI: 10.1158/0008-5472.CAN-10-2941
Source: PubMed

ABSTRACT TGF-β is produced excessively by many solid tumors and can drive malignant progression through multiple effects on the tumor cell and microenvironment. TGF-β signaling pathway inhibitors have shown efficacy in preclinical models of metastatic cancer. Here, we investigated the effect of systemic LY2109761, a TGF-β type I/II receptor (TβRI/TβRII) kinase inhibitor, in both a tumor allograft model and the mouse skin model of de novo chemically induced carcinogenesis in vivo. Systemic LY2109761 administration disrupted tumor vascular architecture and reduced myofibroblast differentiation of E4 skin carcinoma cells in a tumor allograft. In the 7,12-dimethyl-benzanthracene plus phorbol myristate acetate-induced skin chemical carcinogenesis model, acute dosing of established naive primary carcinomas with LY2109761 (100 mg/kg) every 8 hours for 10 days (100 mg/kg) diminished phospho-Smad2 (P-Smad2) levels and marginally decreased the expression of inflammatory and invasive markers. Sustained exposure to LY2109761 (100 mg/kg/d) throughout the tumor outgrowth phase had no effect on carcinoma latency or incidence. However, molecular analysis of resultant carcinomas by microarray gene expression, Western blotting, and immunohistochemistry suggests that long-term LY2109761 exposure leads to the outgrowth of carcinomas with elevated P-Smad2 levels that do not respond to drug. This is the first description of acquired resistance to a small-molecule inhibitor of the TβRI/TβRII kinase. Resultant carcinomas were more aggressive and inflammatory in nature, with delocalized E-cadherin and elevated expression of Il23a, laminin V, and matrix metalloproteinases. Therefore, TGF-β inhibitors might be clinically useful for applications requiring acute administration, but long-term patient exposure to such drugs should be undertaken with caution.

0 Followers
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor-β (TGF-β) is a multifunctional cytokine, with important roles in maintaining tissue homeostasis. TGF-β signals via transmembrane serine/threonine kinase receptors and intracellular Smad transcriptional regulators. Perturbed TGF-β signaling has been implicated in a large variety of pathological conditions. Increased TGF-β levels have been found in patients with cancer, fibrosis, and systemic sclerosis, and were correlated with disease severity. In cancer, TGF-β mediates tumor invasion and metastasis by affecting both tumor cells and the tumor microenvironment including fibroblast activation and immune suppression. Furthermore, TGF-β is a strong stimulator of extracellular matrix deposition. On the basis of these observations, small molecule inhibitors of the TGF-β receptor kinases, neutralizing antibodies that interfere with ligand?receptor interactions, antisense oligonucleotides reducing TGF-β expression, and soluble receptor ectodomains that sequester TGF-β have been developed to intervene with excessive TGF-β signaling activity in the aforementioned disorders. Here, we review the current state of anti-TGF-β therapy in clinical trials.
    Growth factors (Chur, Switzerland) 06/2011; 29(4):140-52. DOI:10.3109/08977194.2011.595411 · 3.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Agents targeting EGFR and related ErbB family proteins are valuable therapies for the treatment of many cancers. For some tumor types, including squamous cell carcinomas of the head and neck (SCCHN), antibodies targeting EGFR were the first protein-directed agents to show clinical benefit, and remain a standard component of clinical strategies for management of the disease. Nevertheless, many patients display either intrinsic or acquired resistance to these drugs; hence, major research goals are to better understand the underlying causes of resistance, and to develop new therapeutic strategies that boost the impact of EGFR/ErbB inhibitors. In this review, we first summarize current standard use of EGFR inhibitors in the context of SCCHN, and described new agents targeting EGFR currently moving through pre-clinical and clinical development. We then discuss how changes in other transmembrane receptors, including IGF1R, c-Met, and TGF-β, can confer resistance to EGFR-targeted inhibitors, and discuss new agents targeting these proteins. Moving downstream, we discuss critical EGFR-dependent effectors, including PLC-γ; PI3K and PTEN; SHC, GRB2, and RAS and the STAT proteins, as factors in resistance to EGFR-directed inhibitors and as alternative targets of therapeutic inhibition. We summarize alternative sources of resistance among cellular changes that target EGFR itself, through regulation of ligand availability, post-translational modification of EGFR, availability of EGFR partners for hetero-dimerization and control of EGFR intracellular trafficking for recycling versus degradation. Finally, we discuss new strategies to identify effective therapeutic combinations involving EGFR-targeted inhibitors, in the context of new system level data becoming available for analysis of individual tumors.
    Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy 09/2011; 14(6):260-79. DOI:10.1016/j.drup.2011.08.002 · 8.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The TGFβ and Ras-MAPK pathways play critical roles in cell development and cell cycle regulation, as well as in tumor formation and metastasis. In the absence of cellular transformation, these pathways operate in opposition to one another, where TGFβ maintains an undifferentiated cell state and suppresses proliferation, while Ras-MAPK pathways promote proliferation, survival and differentiation. However, in colorectal and pancreatic cancers, the opposing pathways' mechanisms are simultaneously activated in order to promote cancer progression and metastasis. Here, we highlight the roles of the TGFβ and Ras-MAPK pathways in normal and malignant states, and provide an explanation for how the concomitant activation of these pathways drives tumor biology. Finally, we survey potential therapeutic targets in these pathways.
    12/2011; 1(1):42. DOI:10.1186/2045-3701-1-42
Show more

Preview

Download
3 Downloads
Available from