Article

A momentum space view of the surface chemical bond

Karl-Franzens University, Universitätsplatz 5, 8010 Graz, Austria.
Physical Chemistry Chemical Physics (Impact Factor: 4.2). 03/2011; 13(9):3604-11. DOI: 10.1039/c0cp01458c
Source: PubMed

ABSTRACT Well-ordered and oriented monolayers of conjugated organic molecules can offer new perspectives on surface bonding. We will demonstrate the importance of the momentum distribution, or symmetry, of the adsorbate molecules' π orbitals in relation to the states available for hybridization at the metal surface. Here, the electronic band structure of the first monolayer of sexiphenyl on Cu(110) has been examined in detail with angle-resolved ultraviolet photoemission spectroscopy over a large momentum range and will be compared to measurements of a multilayer thin film and to density functional calculations. In the monolayer, the one-dimensional intramolecular band structure can still be recognized, allowing an accurate determination of orbital modification upon bonding and the relative energetic positions of the electronic levels. It is seen that the character of the molecular π orbitals is largely maintained despite strong mixing between Cu and molecular states and that the lowest unoccupied molecular orbital (LUMO) is filled by hybridization with Cu s,p states rather than through a charge transfer process. It is also shown that the momentum distribution of the substrate states involved and the periodicity of the molecular overlayer play a large role in the final E(k) distribution of the hybrid states. The distinct momentum distribution of the LUMO, interacting with the Cu substrate s,p valence bands around the gap in the surface projection of the bulk band structure, make this system a particularly illustrative example of momentum resolved hybridization. This system demonstrates that, for hybridization to occur, not only do states require overlap in energy and space, but also in momentum.

Download full-text

Full-text

Available from: Peter Puschnig, Jun 23, 2015
1 Follower
 · 
206 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Graphene's peculiar electronic band structure makes it of interest for new electronic and spintronic approaches. However, potential applications suffer from quantization effects when the spatial extension reaches the nanoscale. We show by photoelectron spectroscopy on nanoscaled model systems (disc-shaped, planar polyacenes) that the two-dimensional band structure is transformed into discrete states which follow the momentum dependence of the graphene Bloch states. Based on a simple model of quantum wells, we show how the band structure of graphene emerges from localized states, and we compare this result with ab initio calculations which describe the orbital structure.
    New Journal of Physics 11/2012; 14:113008. DOI:10.1088/1367-2630/14/11/113008 · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a computational study on the angular-resolved photoemission spectra (ARPES) from a number of polycyclic aromatic hydrocarbons and graphene. Our theoretical approach is based on ab-initio density functional theory and the one-step model where we greatly simplify the evaluation of the matrix element by assuming a plane wave for the final state. Before comparing our ARPES simulations with available experimental data, we discuss how typical approximations for the exchange-correlation energy affect orbital energies. In particular, we show that by employing a hybrid functional, considerable improvement can be obtained over semi-local functionals in terms of band widths and relative energies of π and σ states. Our ARPES simulations for graphene show that the plane wave final state approximation provides indeed an excellent description when compared to experimental band maps and constant binding energy maps. Furthermore, our ARPES simulations for a number of polycyclic aromatic molecules from the oligo-acene, oligo-phenylene, phen-anthrene families as well as for disc-shaped molecules nicely illustrate the evolution of the electronic structure from molecules with increasing size towards graphene.
    Journal of Electron Spectroscopy and Related Phenomena 06/2015; 200. DOI:10.1016/j.elspec.2015.06.003 · 1.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several experimental methods allow measuring the spatial probability density of electrons in atoms, molecules and solids, that is, the absolute square of the respective single-particle wave function. But it is an intrinsic problem of the measurement process that the information about the phase is generally lost during the experiment. The symmetry of this phase, however, is a crucial parameter for the knowledge of the full orbital information in real space. Here, we report on a key experiment that demonstrates that the phase symmetry can be derived from a strictly experimental approach from the circular dichroism in the angular distribution of photoelectrons. In combination with the electron density derived from the same experiment, the full quantum mechanical wave function can thus be determined experimentally.
    Nature Communications 06/2014; 5:4156. DOI:10.1038/ncomms5156 · 10.74 Impact Factor