Article

Optimization of an HTRF Assay for the Detection of Soluble Mutant Huntingtin in Human Buffy Coats: A Potential Biomarker in Blood for Huntington Disease

Novartis Institutes for Biomedical Research, Neuroscience
PLoS currents 12/2010; 2:RRN1205. DOI: 10.1371/currents.RRN1205
Source: PubMed

ABSTRACT A means for measuring levels of soluble huntingtin proteins in clinical samples is essential for assessing the biological effects of potential mutant huntingtin (mtHtt) modifying treatments being developed for Huntington's disease (HD). We have optimized a previously described cell-based Homogeneous Time Resolved Fluorescence method that can measure soluble mtHtt and its ratio to the total Htt (tHtt) in blood buffy coats [1]. The results of the optimization and assay qualification indicate the assay to be specific for mtHtt in HD compared to Control subjects, highly sensitive, and technically and biologically reproducible. We therefore generated a Good Laboratory Practice Standard Operating Procedure which we validated, using 30 HD and 8 control buffy coat samples in which significant differences in mtHtt levels were found. We intend to deploy the assay to evaluate sample sets from observational and therapeutic studies enrolling HD subjects to further validate soluble mtHtt measurement by HTRF as a biomarker for HD and to explore its potential uses.

Full-text

Available from: Paolo Paganetti, May 06, 2015
0 Followers
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Huntington disease (HD) can be seen as a model neurodegenerative disorder, in that it is caused by a single genetic mutation and is amenable to predictive genetic testing, with estimation of years to predicted onset, enabling the entire range of disease natural history to be studied. Structural neuroimaging biomarkers show that progressive regional brain atrophy begins many years before the emergence of diagnosable signs and symptoms of HD, and continues steadily during the symptomatic or 'manifest' period. The continued development of functional, neurochemical and other biomarkers raises hopes that these biomarkers might be useful for future trials of disease-modifying therapeutics to delay the onset and slow the progression of HD. Such advances could herald a new era of personalized preventive therapeutics. We describe the natural history of HD, including the timing of emergence of motor, cognitive and emotional impairments, and the techniques that are used to assess these features. Building on this information, we review recent progress in the development of biomarkers for HD, and potential future roles of these biomarkers in clinical trials.
    Nature Reviews Neurology 03/2014; DOI:10.1038/nrneurol.2014.24 · 14.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Though 20 years have now passed since the cloning of the huntingtin gene (HTT), there remains no treatment for Huntington's Disease (HD) that alters the course of disease or lifespan of patients. The reasons for this are manifold, and likely have to do with the diverse cellular pathways disrupted by mutant HTT (mHTT) protein expression. Furthermore, the evaluation of efficacy using a putative intervention is complex, largely due to the slow course of disease and variability in the classic techniques for evaluating patient symptoms and quality of life, which make the patient populations and duration of trials particularly imposing. However, there are signs for hope both in the clinic and at the bench. This review serves three purposes. It discusses the known cellular pathologies in HD, the current and upcoming methods for clinical evaluation of disease progress, and the tested and untested interventions proposed to counter the progression in animal models and patients. With the vast knowledge of pathology accumulated over two decades of modeling HD in animals and following it in patients, as well as the advances in intervention techniques both pharmaceutical and genetic, there is reason for optimism in the field. Such optimism can only be tempered by the lack of success in the clinic to this point, though patients, scientists, and clinicians all remain enthusiastic about each new trial, and progress can only continue until an effective treatment is found.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyglutamine diseases are a group of inherited neurodegenerative disorders that are caused by an abnormal expansion of a trinucleotide CAG repeat, which encodes a polyglutamine tract in the protein-coding region of the respective disease genes. To date, nine polyglutamine diseases are known, including Huntington's disease, spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy and six forms of spinocerebellar ataxia. These diseases share a salient molecular pathophysiology including the aggregation of the mutant protein followed by the disruption of cellular functions such as transcriptional regulation and axonal transport. The intraneuronal accumulation of mutant protein and resulting cellular dysfunction are the essential targets for the development of disease-modifying therapies, some of which have shown beneficial effects in animal models. In this review, the current status of and perspectives on therapy development for polyglutamine diseases will be discussed.
    Expert Review of Neurotherapeutics 09/2014; 14(10):1-14. DOI:10.1586/14737175.2014.956727 · 2.83 Impact Factor