Yang, X.P. et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat. Immunol. 12, 247-254

Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
Nature Immunology (Impact Factor: 20). 03/2011; 12(3):247-54. DOI: 10.1038/ni.1995
Source: PubMed


Interleukin 2 (IL-2), a cytokine linked to human autoimmune disease, limits IL-17 production. Here we found that deletion of the gene encoding the transcription factor STAT3 in T cells abrogated IL-17 production and attenuated autoimmunity associated with IL-2 deficiency. Whereas STAT3 induced IL-17 and the transcription factor RORγt and inhibited the transcription factor Foxp3, IL-2 inhibited IL-17 independently of Foxp3 and RORγt. STAT3 and STAT5 bound to multiple common sites across the locus encoding IL-17. The induction of STAT5 binding by IL-2 was associated with less binding of STAT3 at these sites and the inhibition of associated active epigenetic marks. 'Titration' of the relative activation of STAT3 and STAT5 modulated the specification of cells to the IL-17-producing helper T cell (T(H)17 cell) subset. Thus, the balance rather than the absolute magnitude of these signals determined the propensity of cells to make a key inflammatory cytokine.

Download full-text


Available from: Kiyoshi Hirahara,
  • Source
    • "AMPK has also been shown to negatively regulate the activation of STAT3 [21]. It is widely known that pSTAT3 competes for the same binding locus as pSTAT5 in IL-17 promoter to enhance IL-17 [22]. Therefore, activating AMPK and inhibiting mTOR are an efficient way to regulate Th17 and Treg concurrently. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Metformin is widely used to suppress certain functions of the cells found in diseases including diabetes and obesity. In this study, the effects of metformin on downregulating IL-17-producing T (Th17) cells, activating and upregulating regulatory T (Treg) cells, suppressing osteoclastogenesis, and clinically scoring collagen-induced arthritis (CIA) were investigated. To evaluate the effect of metformin on CIA, mice were orally fed with either metformin or saline as control three times a week for nine weeks. Histological analysis of the joints was performed using immunohistochemistry and Th17 cells and Treg cells of the spleen tissue were examined by confocal microscopy staining. Metformin mitigated the severity of CIA, reduced serum immunoglobulin concentrations, and reciprocally regulated Th17/Treg axis. Also, metformin treatment of normal cells cultured in Th17 conditions decreased the number of Th17 cells and increased the number of Treg cells. Metformin decreased gene expression and osteoclastogenic activity in CIA and normal mice. These results indicate that metformin had immunomodulatory actions influencing anti-inflammatory action on CIA through the inhibition of Th17 cell differentiation and the upregulation of Treg cell differentiation along with the suppression of osteoclast differentiation. Our results suggest that metformin may be a potential therapeutic for rheumatoid arthritis.
    Mediators of Inflammation 08/2014; 2014:973986. DOI:10.1155/2014/973986 · 3.24 Impact Factor
  • Source
    • "Th17 and Treg are thought to have common precursors cell before they are destined to certain effecter cells. As transcription of IL-17 is regulated by competitive binding of pSTAT3 and pSTAT5 [20], and pSTAT5 is a critical transcriptional factor for Foxp3, the master molecule of Treg, the ratio of pSTAT3 and pSTAT5 is expected to be one of determinants for final effector cell type. While RGE significantly reduced pSTAT3, the level of STAT5 phosphorylation was not increased with RGE treatment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic joint inflammation. Red ginseng is a steamed and dried Panax ginseng C.A. Meyer, which has been used as alternative medicine for thousands of years. This study was undertaken to investigate the effects of red ginseng extracts (RGE) on autoimmune arthritis in mice and humans and to delineate the underlying mechanism. RGE was orally administered three times a week to mice with arthritis. Oral administration of RGE markedly ameliorated clinical arthritis score and histologically assessed joint inflammation in mice with CIA. A significant reduction in STAT3 phosphorylation and a decrease in the number of Th17 cells were observed with RGE treatment. There was also a marked reduction in RANKL-induced osteoclastogenesis with treatment of RGE. The inhibitory effect of RGE on Th17 differentiation and osteoclastogenesis observed in mice was also confirmed in the subsequent experiments performed using human peripheral blood mononuclear cells. Our findings provide the first evidence that RGE can regulate Th17 and reciprocally promote Treg cells by inhibiting the phosphorylation of STAT3. Therefore, RGE can ameliorate arthritis in mice with CIA by targeting pathogenic Th17 and osteoclast differentiation, suggesting a novel therapy for treatment of RA.
    Mediators of Inflammation 07/2014; 2014:351856. DOI:10.1155/2014/351856 · 3.24 Impact Factor
  • Source
    • "Consistently, we saw significant overlaps between the genes affected by each perturbation and known targets of key TFs both in Th17 cells (e.g., BATF and IRF4) and in other CD4 + T cells (e.g., STAT4, GATA3, and Foxp3; Table S1; this analysis was based on publically available data of TF-target interactions; see Supplemental Experimental Procedures). Overall, these results suggest a mode of competition or balance modulated by the transcriptional activity of RORgt (Bettelli et al., 2006; Yang et al., 2011; Zhou et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We identified three retinoid-related orphan receptor gamma t (RORγt)-specific inhibitors that suppress T helper 17 (Th17) cell responses, including Th17-cell-mediated autoimmune disease. We systemically characterized RORγt binding in the presence and absence of drugs with corresponding whole-genome transcriptome sequencing. RORγt acts as a direct activator of Th17 cell signature genes and a direct repressor of signature genes from other T cell lineages; its strongest transcriptional effects are on cis-regulatory sites containing the RORα binding motif. RORγt is central in a densely interconnected regulatory network that shapes the balance of T cell differentiation. Here, the three inhibitors modulated the RORγt-dependent transcriptional network to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target loci, the other two inhibitors affected transcription predominantly without removing DNA binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity.
    Immunity 04/2014; 40(4):477-89. DOI:10.1016/j.immuni.2014.04.004 · 21.56 Impact Factor
Show more