Human cord blood CD4+CD25hi regulatory T cells suppress prenatally acquired T cell responses to Plasmodium falciparum antigens.

Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA.
The Journal of Immunology (Impact Factor: 5.36). 03/2011; 186(5):2780-91. DOI: 10.4049/jimmunol.1001188
Source: PubMed

ABSTRACT In malaria endemic regions, a fetus is often exposed in utero to Plasmodium falciparum blood-stage Ags. In some newborns, this can result in the induction of immune suppression. We have previously shown these modulated immune responses to persist postnatally, with a subsequent increase in a child's susceptibility to infection. To test the hypothesis that this immune suppression is partially mediated by malaria-specific regulatory T cells (T(regs)) in utero, cord blood mononuclear cells (CBMC) were obtained from 44 Kenyan newborns of women with and without malaria at delivery. CD4(+)CD25(lo) T cells and CD4(+)CD25(hi) FOXP3(+) cells (T(regs)) were enriched from CBMC. T(reg) frequency and HLA-DR expression on T(regs) were significantly greater for Kenyan as compared with North American CBMC (p < 0.01). CBMC/CD4(+) T cells cultured with P. falciparum blood-stage Ags induced production of IFN-γ, IL-13, IL-10, and/or IL-5 in 50% of samples. Partial depletion of CD25(hi) cells augmented the Ag-driven IFN-γ production in 69% of subjects with malaria-specific responses and revealed additional Ag-reactive lymphocytes in previously unresponsive individuals (n = 3). Addition of T(regs) to CD4(+)CD25(lo) cells suppressed spontaneous and malaria Ag-driven production of IFN-γ in a dose-dependent fashion, until production was completely inhibited in most subjects. In contrast, T(regs) only partially suppressed malaria-induced Th2 cytokines. IL-10 or TGF-β did not mediate this suppression. Thus, prenatal exposure to malaria blood-stage Ags induces T(regs) that primarily suppress Th1-type recall responses to P. falciparum blood-stage Ags. Persistence of these T(regs) postnatally could modify a child's susceptibility to malaria infection and disease.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Malaria's prevalence during pregnancy varies widely in parts of sub-Saharan Africa, including Burkina Faso. The objective of this study was to evaluate the incidence of mother-to-child malaria transmission during childbirth at St. Camille Medical Centre in the city of Ouagadougou. Methods. Two hundred and thirty-eight (238) women and their newborns were included in the study. Women consenting to participate in this study responded to a questionnaire that identified their demographic characteristics. Asymptomatic malaria infection was assessed by rapid detection test Acon (Acon Malaria Pf, San Diego, USA) and by microscopic examination of Giemsa-stained thick and thin smears from peripheral, placental, and umbilical cord blood. Birth weights were recorded and the biological analyses of mothers and newborns' blood were also performed. Results. The utilization of long-lasting insecticidal nets (LLINs) and intermittent preventive treatment with sulfadoxine-pyrimethamine (SP) were 86.6% and 84.4%, respectively. The parasitic infection rates of 9.5%, 8.9%, and 2.8% were recorded, respectively, for the peripheral, placental, and umbilical cord blood. Placental infection was strongly associated with the presence of parasites in the maternal peripheral blood and a parasite density of >1000 parasites/µL. Conclusion. The prevalence of congenital malaria was reduced but was associated with a high rate of mother-to-child malaria transmission.
    01/2014; 2014:390513. DOI:10.1155/2014/390513
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parasitic infections are prevalent among pregnant women in sub-Saharan Africa. We investigated whether prenatal exposure to malaria and/or helminths affects the pattern of infant immune responses to standard vaccinations against Haemophilus influenzae (Hib), diphtheria (DT), hepatitis B (Hep B) and tetanus toxoid (TT). 450 Kenyan women were tested for malaria, schistosomiasis, lymphatic filariasis (LF), and intestinal helminths during pregnancy. After three standard vaccinations at 6, 10 and 14 weeks, their newborns were followed biannually to age 36 months and tested for absolute levels of IgG against Hib, DT, Hep B, and TT at each time point. Newborns' cord blood (CB) lymphocyte responses to malaria blood-stage antigens, soluble Schistosoma haematobium worm antigen (SWAP), and filaria antigen (BMA) were also assessed. Three immunophenotype categories were compared: i) tolerant (those having Plasmodium-, Schistosoma-, or Wuchereria-infected mothers but lacking respective Th1/Th2-type recall responses at birth to malaria antigens, SWAP, or BMA); ii) sensitized (those with infected/uninfected mothers and detectable Th1/Th2-type CB recall response to respective parasite antigen); or iii) unexposed (no evidence of maternal infection or CB recall response). Overall, 78.9% of mothers were infected with LF (44.7%), schistosomiasis (32.4%), malaria (27.6%) or hookworm (33.8%). Antenatal maternal malaria, LF, and hookworm were independently associated with significantly lower Hib-specific IgG. Presence of multiple maternal infections was associated with lower infant IgG levels against Hib and DT antigens post-vaccination. Post-vaccination IgG levels were also significantly associated with immunophenotype: malaria-tolerized infants had reduced response to DT, whereas filaria-tolerized infants showed reduced response to Hib. There is an impaired ability to develop IgG antibody responses to key protective antigens of Hib and diphtheria in infants of mothers infected with malaria and/or helminths during pregnancy. These findings highlight the importance of control and prevention of parasitic infections among pregnant women.
    PLoS Neglected Tropical Diseases 01/2015; 9(1):e0003466. DOI:10.1371/journal.pntd.0003466 · 4.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Almost 7 million children under the age 5 die each year, and most of these deaths are attributable to vaccine-preventable infections. Young infants respond poorly to infections and vaccines. In particular, dendritic cells secrete less IL-12 and IL-18, CD8(pos) T cells and NK cells have defective cytolysis and cytokine production, and CD4(pos) T cell responses tend to bias towards a Th2 phenotype and promotion of regulatory T cells (Tregs). The basis for these differences is not well understood and may be in part explained by epigenetic differences, as well as immaturity of the infant's immune system. Here we present a third possibility, which involves active suppression by immune regulatory cells and place in context the immune suppressive pathways of mesenchymal stromal cells (MSC), myeloid-derived suppressor cells (MDSC), CD5(pos) B cells, and Tregs. The immune pathways that these immune regulatory cells inhibit are similar to those that are defective in the infant. Therefore, the immune deficiencies seen in infants could be explained, in part, by active suppressive cells, indicating potential new avenues for intervention.
    Virology: Research and Treatment 01/2014; 2014(5):1-9. DOI:10.4137/VRT.S12248


1 Download
Available from