Article

Neurogenesis in Adult Human Brain after Traumatic Brain Injury.

First Affiliated Hospital, Wenzhou Medical College, Department of Neurosurgery, Wenzhou, China; .
Journal of neurotrauma (Impact Factor: 4.25). 01/2011; DOI: 10.1089/neu.2010.1579
Source: PubMed

ABSTRACT While much work has been conducted regarding the neurogenesis response to traumatic brain injury (TBI) in rodents, it remains largely unknown whether neurogenesis in adult human brain also responds to TBI in a similar manner. Here, we performed immunocytochemistry on eleven brain specimens from patients with traumatic brain injury, who underwent surgical intervention. We found that expression of neural stem/progenitor cell (NSC) protein markers including DCX, TUC4, PSA-NCAM, SOX2 and NeuroD were increased in the perilesional cortex of human brain after TBI, compared to normal brain. Confocal images showed that these NSC proteins were expressed in one single cell. We also found that proliferative markers were expressed in NSC protein-positive cells after TBI, and the number of proliferative NSCs was significantly increased after TBI. Our data suggest that TBI may also induce neurogenesis in human brain.

1 Bookmark
 · 
172 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injury (TBI) is the leading cause of death and disability of persons under 45 years old in the United States, affecting over 1.5 million individuals each year. It had been thought that recovery from such injuries is severely limited due to the inability of the adult brain to replace damaged neurons. However, recent studies indicate that the mature mammalian central nervous system (CNS) has the potential to replenish damaged neurons by proliferation and neuronal differentiation of adult neural stem/progenitor cells residing in the neurogenic regions in the brain. Furthermore, increasing evidence indicates that these endogenous stem/progenitor cells may play regenerative and reparative roles in response to CNS injuries or diseases. In support of this notion, heightened levels of cell proliferation and neurogenesis have been observed in response to brain trauma or insults suggesting that the brain has the inherent potential to restore populations of damaged or destroyed neurons. This review will discuss the potential functions of adult neurogenesis and recent development of strategies aiming at harnessing this neurogenic capacity in order to repopulate and repair the injured brain.
    Neural Regeneration Research 04/2014; 9(7):688-92. · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injury (TBI) is a major cause of death and long-term disability worldwide. To date, there are no effective pharmacological treatments for TBI. Recombinant human tissue plasminogen activator (tPA) is the effective drug for the treatment of acute ischemic stroke. In addition to its thrombolytic effect, tPA is also involved in neuroplasticity in the central nervous system. However, tPA has potential adverse side effects when administered intravenously including brain edema and hemorrhage. Here we report that tPA, administered by intranasal delivery during the subacute phase after TBI, provides therapeutic benefit. Animals with TBI were treated intranasally with saline or tPA initiated 7 days after TBI. Compared with saline treatment, subacute intranasal tPA treatment significantly 1) improved cognitive (Morris water maze test) and sensorimotor (footfault and modified neurological severity score) functional recovery in rats after TBI, 2) reduced the cortical stimulation threshold evoking ipsilateral forelimb movement, 3) enhanced neurogenesis in the dentate gyrus and axonal sprouting of the corticospinal tract originating from the contralesional cortex into the denervated side of the cervical gray matter, and 4) increased the level of mature brain-derived neurotrophic factor. Our data suggest that subacute intranasal tPA treatment improves functional recovery and promotes brain neurogenesis and spinal cord axonal sprouting after TBI, which may be mediated, at least in part, by tPA/plasmin-dependent maturation of brain-derived neurotrophic factor.
    PLoS ONE 09/2014; 9(9):e106238. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wars in Iraq and Afghanistan have highlighted the problems of diagnosis and treatment of mild traumatic brain injury (mTBI). MTBI is a heterogeneous injury that may lead to the development of neurological and behavioral disorders. In the absence of specific diagnostic markers, mTBI is often unnoticed or misdiagnosed. In this study, mice were induced with increasing levels of mTBI and microRNA (miRNA) changes in the serum were determined. MTBI was induced by varying weight and fall height of the impactor rod resulting in four different severity grades of the mTBI. Injuries were characterized as mild by assessing with the neurobehavioral severity scale-revised (NSS-R) at day 1 post injury. Open field locomotion and acoustic startle response showed behavioral and sensory motor deficits in 3 of the 4 injury groups at day 1 post injury. All of the animals recovered after day 1 with no significant neurobehavioral alteration by day 30 post injury. Serum microRNA (miRNA) profiles clearly differentiated injured from uninjured animals. Overall, the number of miRNAs that were significantly modulated in injured animals over the sham controls increased with the severity of the injury. Thirteen miRNAs were found to identify mTBI regardless of its severity within the mild spectrum of injury. Bioinformatics analyses revealed that the more severe brain injuries were associated with a greater number of miRNAs involved in brain related functions. The evaluation of serum miRNA may help to identify the severity of brain injury and the risk of developing adverse effects after TBI.
    PLoS ONE 11/2014; 9(11):e112019. · 3.53 Impact Factor