Oligonucleotide array-in-well platform for detection and genotyping human adenoviruses by utilizing upconverting phosphor label technology.

Department of Biotechnology, University of Turku, Turku, Finland.
Analytical Chemistry (Impact Factor: 5.83). 02/2011; 83(4):1456-61. DOI: 10.1021/ac103155f
Source: PubMed

ABSTRACT We have developed a robust array-in-well test platform based on an oligonucleotide array, combining advantages of simple instrumentation and new upconverting phosphor reporter technology. Upconverting inorganic lanthanide phosphors have a unique property of photoluminescence emission at visible wavelengths under near-infrared excitation. No autofluorescence is produced from the sample or support material, enabling a highly sensitive assay. In this study, the assay is performed in standard 96-well microtiter plates, making the technique easily adaptable to high-throughput analysis. The oligonucleotide array-in-well assay is employed to detect a selection of ten common adenovirus genotypes causing human infections. The study provides a demonstration of the advantages and potential of the upconverting phosphor-based reporter technology in multianalyte assays and anti-Stokes photoluminescence detection with an anti-Stokes photoluminescence imaging device.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipase D (PLD) is a critical component of intracellular signal transduction and has been implicated in many important biological processes. It has been observed that there are abnormalities in PLD expression in many human cancers, and PLD is thus recognized as a potential diagnostic biomarker as well as target for drug discovery. We report for the first time a phospholipid-modified nanoprobe for ratiometric upconversion fluorescence (UCF) sensing and bioimaging of PLD activity. The nanoprobe can be synthesized by a facile one-step self-assembly of a phospholipid monolayer composed of PEGylated phospholipid and rhodamine B-labeled phospholipid on the surface of upconversion nanoparticles (UCNPs) NaYF4: 20%Yb, 2%Er. The fluorescence resonance energy transfer (FRET) process from the UCF emission at 540 nm of the UCNPs to the absorbance of the rhodamine B occurs in the nanoprobe. The PLD-mediated hydrolysis of the phosphodiester bond makes rhodamine B apart from the UCNP surface, leading to the inhibition of FRET. Using the unaffected UCF emission at 655 nm as an internal standard, the nanoprobe can be used for ratiometric UCF detection of PLD activity with high sensitivity and selectivity. The PLD activity in cell lysates is also determined by the nanoprobe, confirming that PLD activity in breast cancer cell is at least 7-fold high than in normal cell. Moreover, the nanoprobe has been successfully applied to monitoring PLD activity in living cells by UCF bioimaging. The results reveal that the nanoprobe provides a simple, sensitive, and robust platform for point-of-care diagnostics and drug screening in biomedical applications.
    Analytical Chemistry 06/2014; · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Upconversion nanoparticles (UCNPs) represent a new class of fluorophores. Both the excitation and (anti-Stokes) emission wavelengths are in the long wave part of the spectrum so that their luminescence can deeply penetrate tissues and cause low photodamage in biological samples. Their large anti-Stokes shifts, sharp emission bands, zero auto-fluorescence from biological samples and high photostability renders them an ideal kind of fluorescent labels for a variety of analytical formats, for bioimaging in cancer therapy. This review covers the basic mechanisms of up-conversion luminescence, the methods for the synthesis and surface modification of biocompatible UCNPs, and aspects of the in vivo delivery of UCNPs. More specifically, we discuss (a) recent progress regarding UCNPs for multimodal targeted tumor imaging, (b) UCNP-based methods of biological detection and sensing, (c) the use of UCNPs in drug delivery, (d) applications in photodynamic therapy, photothermal therapy and radiotherapy. Finally, we are addressing challenges and opportunities of this quickly emerging field. Contains 362 references. FigureSchematic illustration of multifunctional UCNPs for biological applications
    Microchimica Acta 01/2014; 181. · 3.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optical sensing can provide opportunity for simultaneous determination of multiple targets as well as for implementation of ratiometric methods that can improve accuracy and precision. Herein we report a paper-based two-color oligonucleotide detection assay with tunable sensitivity that is based on use of a single type of upconversion nanoparticle (UCNP). Water soluble UCNPs were designed to concurrently offer green and red emission. These avidin functionalized UCNPs were adsorbed onto a cellulose support, and Cy3 was used as a green channel acceptor for Survival Motor Neuron (SMN1) target, and Cy5.5 was the red channel acceptor for the glucuronidase gene (uidA) target. Selective DNA hybridization of the labeled targets with the corresponding probe provided emission from dyes, which was the basis for concurrent quantification of both targets. The limit of detection (LOD) could be tuned by changing the relative ratio of the SMN1 and uidA probes. A higher proportion of a probe provided for a lower LOD. When the SMN1/uidA probe ratio was 1:4, the LOD for SMN1 and uidA target were 54.3 fmol and 30.5 fmol, and when the probe ratio was 4:1, the LOD for the above targets were 22.1 fmol and 1260 fmol, respectively. Selectivity evaluation showed that one base pair mismatched DNA for SMN1 and uidA could be discriminated in most cases. The assay showed resistance to nonspecific adsorption of interfering DNA and protein, and was even functional for targets in undiluted serum. This work represents a significant step in the development of paper-based multiplexed UCNP luminescence assays.
    Analytical Chemistry 10/2014; · 5.83 Impact Factor