CHOP deletion does not impact the development of diabetes but suppresses the early production of insulin autoantibody in the NOD mouse

Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan.
Apoptosis (Impact Factor: 3.69). 04/2011; 16(4):438-48. DOI: 10.1007/s10495-011-0576-2
Source: PubMed


C/EBP homologous protein (CHOP) has been proposed as a key transcription factor for endoplasmic reticulum (ER) stress-mediated β-cell death induced by inflammatory cytokines in vitro. However, the contribution of CHOP induction to the pathogenesis of type 1 diabetes is not yet clear. To evaluate the relevance of CHOP in the pathogenesis of type 1 diabetes in vivo, we generated CHOP-deficient non-obese diabetic (NOD.Chop (-/-)) mice. CHOP deficiency did not affect the development of insulitis and diabetes and apoptosis in β-cells. Interestingly, NOD.Chop (-/-) mice exhibited a delayed appearance of insulin autoantibodies compared to wild-type (wt) mice. Adoptive transfer with the diabetogenic, whole or CD8(+)-depleted splenocytes induced β-cell apoptosis and the rapid onset of diabetes in the irradiated NOD.Chop (-/-) recipients with similar kinetics as in wt mice. Expression of ER stress-associated genes was not significantly up-regulated in the islets from NOD.Chop (-/-) compared to those from wt mice or NOD-scid mice. These findings suggest that CHOP expression is independent of the development of insulitis and diabetes but might affect the early production of insulin autoantibodies in the NOD mouse.


Available from: Seiichi Oyadomari
  • Source
    • "Moreover, islets from these mice showed resistance to NO, a chemical agent implicated in β cells disruption in type 1 diabetes [96]. In contrast, CHOP deficiency in a genetic background of nonobese diabetic mice (NOD-Chop−/−) did not affect the development of insulitis, diabetes, and β cells apoptosis [97]. Interestingly, CHOP knockout mice on a C57BL/6 background showed a different phenotype, with abdominal obesity and hepatic steatosis, while preserving normal glucose tolerance and insulin sensitivity [98]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic β cell failure leads to diabetes development. During disease progression, β cells adapt their secretory capacity to compensate the elevated glycaemia and the peripheral insulin resistance. This compensatory mechanism involves a fine-tuned regulation to modulate the endoplasmic reticulum (ER) capacity and quality control to prevent unfolded proinsulin accumulation, a major protein synthetized within the β cell. These signalling pathways are collectively termed unfolded protein response (UPR). The UPR machinery is required to preserve ER homeostasis and β cell integrity. Moreover, UPR actors play a key role by regulating ER folding capacity, increasing the degradation of misfolded proteins, and limiting the mRNA translation rate. Recent genetic and biochemical studies on mouse models and human UPR sensor mutations demonstrate a clear requirement of the UPR machinery to prevent β cell failure and increase β cell mass and adaptation throughout the progression of diabetes. In this review we will highlight the specific role of UPR actors in β cell compensation and failure during diabetes.
    Journal of Diabetes Research 04/2014; 2014:795171. DOI:10.1155/2014/795171 · 2.16 Impact Factor
  • Source
    • "Our study does not address whether this reduction in β-cell mass in prediabetic NOD mice is a direct consequence of ER stress. Interestingly, a recent study by Satoh et al. (14) showed that global Chop deletion on the NOD background did not protect against β-cell loss or diabetes development. Moreover, studies using isolated rodent and human islets suggest that ER stress may not directly contribute to β-cell death, but rather to insulin secretory defects (11). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes is preceded by islet β-cell dysfunction, but the mechanisms leading to β-cell dysfunction have not been rigorously studied. Because immune cell infiltration occurs prior to overt diabetes, we hypothesized that activation of inflammatory cascades and appearance of endoplasmic reticulum (ER) stress in β-cells contributes to insulin secretory defects. Prediabetic nonobese diabetic (NOD) mice and control diabetes-resistant NOD-SCID and CD1 strains were studied for metabolic control and islet function and gene regulation. Prediabetic NOD mice were relatively glucose intolerant and had defective insulin secretion with elevated proinsulin:insulin ratios compared with control strains. Isolated islets from NOD mice displayed age-dependent increases in parameters of ER stress, morphologic alterations in ER structure by electron microscopy, and activation of nuclear factor-κB (NF-κB) target genes. Upon exposure to a mixture of proinflammatory cytokines that mimics the microenvironment of type 1 diabetes, MIN6 β-cells displayed evidence for polyribosomal runoff, a finding consistent with the translational initiation blockade characteristic of ER stress. We conclude that β-cells of prediabetic NOD mice display dysfunction and overt ER stress that may be driven by NF-κB signaling, and strategies that attenuate pathways leading to ER stress may preserve β-cell function in type 1 diabetes.
    Diabetes 04/2012; 61(4):818-27. DOI:10.2337/db11-1293 · 8.10 Impact Factor
  • Source

    Type 1 Diabetes - Complications, Pathogenesis, and Alternative Treatments, 11/2011; , ISBN: 978-953-307-756-7
Show more

Similar Publications