MassSQUIRM An assay for quantitative measurement of lysine demethylase activity

Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
Epigenetics: official journal of the DNA Methylation Society (Impact Factor: 5.11). 04/2011; 6(4):490-9. DOI: 10.4161/epi.6.4.14531
Source: PubMed

ABSTRACT In eukaryotes, DNA is wrapped around proteins called histones and is condensed into chromatin. Post-translational modification of histones can result in changes in gene expression. One of the most well-studied histone modifications is the methylation of lysine 4 on histone H3 (H3K4). This residue can be mono-, di- or tri-methylated and these varying methylation states have been associated with different levels of gene expression. Understanding exactly what the purpose of these methylation states is, in terms of gene expression, has been a topic of much research in recent years. Enzymes that can add (methyltransferases) and remove (demethylases) these modifications are of particular interest. The first demethylase discovered, LSD1, is the most well-classified and has been implicated in contributing to human cancers and to DNA damage response pathways. Currently, there are limited methods for accurately studying the activity of demethylases in vitro or in vivo. In this work, we present MassSQUIRM (mass spectrometric quantitation using isotopic reductive methylation), a quantitative method for studying the activity of demethylases capable of removing mono- and di-methyl marks from lysine residues. We focus specifically on LSD1 due to its potential as a prime therapeutic target for human disease. This quantitative approach will enable better characterization of the activity of LSD1 and other chromatin modifying enzymes in vitro, in vivo or in response to inhibitors.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The quantitation of lysine post-translational modifications (PTMs) by bottom-up mass spectrometry is convoluted by the need for analogous derivatives and the production of different tryptic peptides from the unmodified and modified versions of a protein. Chemical derivatization of lysines prior to enzymatic digestion circumvents these problems and has proven to be a successful method for lysine PTM quantitation. The most notable example is the use of deuteroacetylation to quantitate lysine acetylation. In this work, levels of lysine ubiquitination were quantitated using a structurally homologous label that is chemically similar to the di-glycine (GlyGly)-tag, which is left at the ubiquitination site upon trypsinolysis. The LC-MS analysis of a chemically equivalent mono-glycine (Gly)-tag that is analogous to the corresponding GlyGly-tag proved that the mono-glycine tag can be used for the quantitation of ubiquitination. A glycinylation protocol was then established for the derivatization of proteins to label unmodified lysine residues with a single glycine tag. Ubiquitin multimers were used to show that after glycinylation and tryptic digestion, the mass spectrometric response from the corresponding analogous tagged peptides could be compared for relative quantitation. For a proof of principle regarding the applicability of this technique to the analysis of ubiquitination in biological samples, the glycinylation technique was used to quantitate the increase in mono-ubiquitinated histone H2B that is observed in yeast which lack the enzyme responsible for deubiquitinating H2B-K123, compared to wild-type yeast.
    Analytical Chemistry 05/2013; 85(12). DOI:10.1021/ac400398s · 5.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein methylation and acetylation play an important role in biological processes, and misregulation of these modifications are involved in various diseases. Therefore, it is critical to understand the activities of the enzymes responsible for these modifications. Herein we describe a sensitive method for ratiometric quantification of methylated and acetylated peptides via MALDI-MS by direct spotting of enzymatic protein methylation and acetylation reaction mixtures without tedious purification procedures. The quantifiable detection limit for peptides with our method is approximately 10 femtomoles. This is achieved by increasing the signal-to-noise ratio through addition of NH4H2PO4 to the matrix solution and reduction of the matrix CHCA concentration to 2 mg/mL. We have demonstrated the application of this method in enzyme kinetic analysis and inhibition studies. The unique feature of this method is the simultaneous quantification of multiple peptide species for investigation of processivity mechanisms. Its wide buffer compatibility makes it possible to be adapted for the investigation of the activity of any protein methyltransferases and acetyltransferases. Copyright © 2015 Elsevier Inc. All rights reserved.
    Analytical Biochemistry 03/2015; 478:59-64. DOI:10.1016/j.ab.2015.03.007 · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysine-specific demethylase 1 (LSD1) is an epigenetic enzyme that oxidatively cleaves methyl groups from monomethyl and dimethyl Lys4 of histone H3 (H3K4Me1, H3K4Me2) and can contribute to gene silencing. This study describes the design and synthesis of analogues of a monoamine oxidase antidepressant, phenelzine, and their LSD1 inhibitory properties. A novel phenelzine analogue (bizine) containing a phenyl-butyrylamide appendage was shown to be a potent LSD1 inhibitor in vitro and was selective versus monoamine oxidases A/B and the LSD1 homologue, LSD2. Bizine was found to be effective at modulating bulk histone methylation in cancer cells, and ChIP-seq experiments revealed a statistically significant overlap in the H3K4 methylation pattern of genes affected by bizine and those altered in LSD1-/- cells. Treatment of two cancer cell lines, LNCaP and H460, with bizine conferred a reduction in proliferation rate, and bizine showed additive to synergistic effects on cell growth when used in combination with two out of five HDAC inhibitors tested. Moreover, neurons exposed to oxidative stress were protected by the presence of bizine, suggesting potential applications in neurodegenerative disease.
    ACS Chemical Biology 04/2014; 9(6). DOI:10.1021/cb500018s · 5.36 Impact Factor

Full-text (2 Sources)

Available from
Jun 6, 2014

Similar Publications