Identification of adult nephron progenitors capable of kidney regeneration in zebrafish.

Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
Nature (Impact Factor: 42.35). 02/2011; 470(7332):95-100. DOI: 10.1038/nature09669
Source: PubMed

ABSTRACT Loss of kidney function underlies many renal diseases. Mammals can partly repair their nephrons (the functional units of the kidney), but cannot form new ones. By contrast, fish add nephrons throughout their lifespan and regenerate nephrons de novo after injury, providing a model for understanding how mammalian renal regeneration may be therapeutically activated. Here we trace the source of new nephrons in the adult zebrafish to small cellular aggregates containing nephron progenitors. Transplantation of single aggregates comprising 10-30 cells is sufficient to engraft adults and generate multiple nephrons. Serial transplantation experiments to test self-renewal revealed that nephron progenitors are long-lived and possess significant replicative potential, consistent with stem-cell activity. Transplantation of mixed nephron progenitors tagged with either green or red fluorescent proteins yielded some mosaic nephrons, indicating that multiple nephron progenitors contribute to a single nephron. Consistent with this, live imaging of nephron formation in transparent larvae showed that nephrogenic aggregates form by the coalescence of multiple cells and then differentiate into nephrons. Taken together, these data demonstrate that the zebrafish kidney probably contains self-renewing nephron stem/progenitor cells. The identification of these cells paves the way to isolating or engineering the equivalent cells in mammals and developing novel renal regenerative therapies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Podocytes are specialized cells of the kidney that form the blood filtration barrier in the kidney glomerulus. The barrier function of podocytes depends upon the development of specialized cell-cell adhesion complexes called slit-diaphragms that form between podocyte foot processes surrounding glomerular blood vessels. Failure of the slit-diaphragm to form results in leakage of high molecular weight proteins into the blood filtrate and urine, a condition called proteinuria. In this work, we test whether the zebrafish pronephros can be used as an assay system for the development of glomerular function with the goal of identifying novel components of the slit-diaphragm. We first characterized the function of the zebrafish homolog of Nephrin, the disease gene associated with the congenital nephritic syndrome of the Finnish type, and Podocin, the gene mutated in autosomal recessive steroid-resistant nephrotic syndrome. Zebrafish nephrin and podocin were specifically expressed in pronephric podocytes and required for the development of pronephric podocyte cell structure. Ultrastructurally, disruption of nephrin or podocin expression resulted in a loss of slit-diaphragms at 72 and 96 h post-fertilization and failure to form normal podocyte foot processes. We also find that expression of the band 4.1/FERM domain gene mosaic eyes in podocytes is required for proper formation of slit-diaphragm cell-cell junctions. A functional assay of glomerular filtration barrier revealed that absence of normal nephrin, podocin or mosaic eyes expression results in loss of glomerular filtration discrimination and aberrant passage of high molecular weight substances into the glomerular filtrate.
    Developmental Biology 10/2005; 285(2):316-29. · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fish kidney provides a unique model for investigating renal injury, repair, and development. Like mammalian kidneys, fish kidneys have the remarkable ability to repair injured nephrons, designated renal regeneration. This response is marked by a recovery from acute renal failure by replacing the injured cells with new epithelial cells, restoring tubule integrity. In addition, fish have the ability to respond to renal injury by de novo nephron neogenesis. This response occurs in multiple fish species including goldfish, zebrafish, catfish, trout, tilapia, and the aglomerular toadfish. New nephrons develop in the weeks after the initial injury. This nephrogenic response can be induced in adult fish, providing a more abundant source of developing renal tissue compared with fetal mammalian kidneys. Investigating the roles played by different parts of the nephron during development and repair can be facilitated using fish models with differing renal anatomy, such as aglomerular fish. The fish nephron neogenesis model may also help to identify novel genes involved in nephrogenesis, information that could eventually be used to develop alternative renal replacement therapies.
    ILAR journal / National Research Council, Institute of Laboratory Animal Resources 02/2001; 42(4):285-91. · 1.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During appendage regeneration in urodeles and teleosts, tissue replacement is precisely regulated such that only the appropriate structures are recovered, a phenomenon referred to as positional memory. It is believed that there exists, or is quickly established after amputation, a dynamic gradient of positional information along the proximodistal (PD) axis of the appendage that assigns region-specific instructions to injured tissue. These instructions specify the amount of tissue to regenerate, as well as the rate at which regenerative growth is to occur. A striking theme among many species is that the rate of regeneration is more rapid in proximally amputated appendages compared with distal amputations. However, the underlying molecular regulation is unclear. Here, we identify position-dependent differences in the rate of growth during zebrafish caudal fin regeneration. These growth rates correlate with position-dependent differences in blastemal length, mitotic index and expression of the Fgf target genes mkp3, sef and spry4. To address whether PD differences in amounts of Fgf signaling are responsible for position-dependent blastemal function, we have generated transgenic fish in which Fgf receptor activity can be experimentally manipulated. We find that the level of Fgf signaling exhibits strict control over target gene expression, blastemal proliferation and regenerative growth rate. Our results demonstrate that Fgf signaling defines position-dependent blastemal properties and growth rates for the regenerating zebrafish appendage.
    Development 01/2006; 132(23):5173-83. · 6.27 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014