Article

The glutathione transferase inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) increases temozolomide efficacy against malignant melanoma.

Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy.
European journal of cancer (Oxford, England: 1990) (Impact Factor: 4.12). 01/2011; 47(8):1219-30. DOI: 10.1016/j.ejca.2010.12.008
Source: PubMed

ABSTRACT First line treatment of metastatic melanoma includes the methylating agent dacarbazine or its analogue temozolomide (TMZ) with improved pharmacokinetics and tolerability. However, the prognosis of the metastatic disease is poor and several trials are evaluating TMZ in polychemotherapy protocols. The novel glutathione transferase P1-1 (GSTP1-1) inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) has recently shown activity against melanoma through c-Jun N-terminal kinase activation. In this study we have investigated the in vitro and in vivo efficacy of NBDHEX and TMZ combination against melanoma. The results indicated that NBDHEX and TMZ exerted in vitro synergistic anti-proliferative effects in murine B16 and human A375 melanoma cells. In B16 cells TMZ as single agent caused cell accumulation at the G(2)/M phase of cell cycle, whereas NBDHEX induced mainly apoptotic effects. NBDHEX provoked a higher level of p53 phosphorylation with respect to TMZ and the drug combination caused a more than additive increase of p53 activation. The in vivo efficacy of NBDHEX and TMZ has been investigated in an orthotopic B16 model. Treatment with NBDHEX provoked a reduction of tumour growth comparable to that obtained with TMZ, whereas the drug combination significantly increased tumour growth inhibition with respect to the single agents, without worsening TMZ myelotoxicity. Immunohistochemical analysis of tumour grafts revealed a profound reduction of Cyclin D1 and CD31 in all treatment groups; VEGF expression was, instead, markedly decreased only in NBDHEX or NBDHEX and TMZ treated samples. These findings indicate that NBDHEX represents a good candidate for combination therapies including TMZ, offering new perspectives for the treatment of melanoma.

0 Bookmarks
 · 
135 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The blood-brain barrier (BBB) is known to protect healthy brain cells from potentially dangerous chemical agents, but there are many evidences supporting the idea that this protective action is extended to tumor cells. Since the process of angiogenesis in brain tumors leads to BBB breakdown, biochemical characteristics of the BBB seem to be more relevant than physical barriers to protect tumor cells from chemotherapy. In fact, a number of resistance related factors were already demonstrated to be component of both BBB and tumor cells. The enzyme glutathione S-transferases (GST) detoxify electrophilic xenobiotics and endogenous secondary metabolites formed during oxidative stress. A role has been attributed to GST in the resistance of cancer cells to chemotherapeutic agents. This study characterized 8-methoxypsoralen (8-MOP) as a human GST P1-1 (hGST P1-1) inhibitor. To identify and characterize the potential inhibitory activity of 8-MOP, we studied the enzyme kinetics of the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) with GSH catalyzed by hGST P1-1. We report here that 8-MOP competitively inhibited hGST P1-1 relative to CDNB, but there was an uncompetitive inhibition relative to GSH. Chromatographic analyses suggest that 8-MOP is not a substrate. Molecular docking simulations suggest that 8-MOP binds to the active site, but its position prevents the GSH conjugation. Thus, we conclude that 8-MOP is a promising prototype for new GST inhibitors pharmacologically useful in the treatment of neurodegenerative disorders and the resistance of cancer to chemotherapy.
    Frontiers in Cellular Neuroscience 01/2014; 8:308. · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma is the most aggressive form of skin cancer and, if spread outside the epidermis, has a dismal prognosis. Before the approval of the anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) monoclonal antibody ipilimumab and the BRAF inhibitors vemurafenib and dabrafenib, no other agents had demonstrated better results in terms of overall survival than the DNA-methylating compound dacarbazine (or its oral analog temozolomide). However, most patients with metastatic melanoma do not obtain long-lasting clinical benefit from ipilimumab and responses to BRAF inhibitors are short lived. Thus, combination therapies with inhibitors of DNA repair (e.g., poly(ADP-ribose) polymerase [PARP] inhibitors), novel immunomodulators (monoclonal antibodies against programmed death-1 [PD-1] or its ligand PD-L1), targeted therapies (mitogen-activated protein kinase [MAPK]/extracellular signal-regulated kinase [ERK] kinase [MEK] or phosphatidylinositol 3-kinase [PI3K]/AKT/mammalian target of rapamycin [mTOR] inhibitors) or antiangiogenic agents are currently being investigated to improve the efficacy of antimelanoma therapies. This review discusses the implications of simultaneously targeting key regulators of melanoma cell proliferation/survival and immune responses to counteract resistance.
    Trends in Pharmacological Sciences 11/2013; · 9.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate anti-proliferatory activity of a selected N,N-[(8-hydroxyquinoline)methyl]-substituted benzylamine (JLK1486) on melanoma cells and to characterize its mechanism of cell population growth inhibition.
    Cell Proliferation 08/2014; · 3.28 Impact Factor