Characterization of the past and current duplication activities in the human 22q11.2 region

Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
BMC Genomics (Impact Factor: 4.04). 01/2011; 12:71. DOI: 10.1186/1471-2164-12-71
Source: PubMed

ABSTRACT Segmental duplications (SDs) on 22q11.2 (LCR22), serve as substrates for meiotic non-allelic homologous recombination (NAHR) events resulting in several clinically significant genomic disorders.
To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young Alu SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs) exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb) are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young AluYs at their breakpoints.
Our study indicates that AluYs are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and Alu elements.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. RESULTS: Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII subfamilies in the Abp region resembles the rest of the genome. CONCLUSIONS: We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in the most recent duplication are the main contributions of our study.
    BMC Evolutionary Biology 05/2013; 13(1):107. DOI:10.1186/1471-2148-13-107 · 3.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chromosome 22q11.2 region microduplication has been described in patients with variable phenotypes. Here we present a 3-month-old girl with both 22q11.2 microduplication and 19p13.12-13.13 deletion. The presence of both genomic imbalances in one patient has not been previously reported in literature. A routine G-banding karyotype analysis was performed using peripheral lymphocytes. Chromosome microarray analysis (CMA) was done using Affymetrix CytoScan™ HD array. The result of karyotyping showed that the patient is 46,XX,t(12;19)(q24.3;p13.1), but CMA detected a 2.8Mb microduplication within the region 22q11.2 (chr22: 18,648,866-21,465,659) and a 1.2Mb deletion on the chromosome 19 at band p13.12-p13.13 (chr19: 13,107,938-14,337,347) in her genome, while no abnormalities were identified on 12q24.3. The 3-month-old girl presented with microcephaly, cleft palate, low set and retroverted ears, and facial dysmorphism which consisted of the following: a long narrow face, widely spaced eyes, downslanting palpebral fissures, broad nasal base, short philtrum, thin upper lip, and micro/retrognathia. She also had a congenital right pulmonary artery sling and tracheal stenosis and suffered from significant hypotonia and partial bilateral mixed hearing loss. We report a case of 22q11.2 duplication syndrome with 19p13.12-13.13 deletion. Synergistic effect from the two genomic imbalances is likely responsible for the complicated clinical features observed in this patient.
    Gene 12/2013; DOI:10.1016/j.gene.2013.11.082 · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromosome 22q11.2 microduplication syndrome is characterized by a variable and usually mild phenotype and by incomplete penetrance. Neurological features of the syndrome may entail intellectual or learning disability, motor delay, and other neurodevelopmental disorders. However, seizures or abnormal EEG are reported in a few cases. We describe a 6-year-old girl with microduplication of chromosome 22q11.2 and epilepsy with continuous spikes and waves during sleep (CSWS). Her behavioral disorder, characterized by hyperactivity, impulsiveness, attention deficit, and aggressiveness, became progressively evident a few months after epilepsy onset, suggesting a link with the interictal epileptic activity characterizing CSWS. We hypothesize that, at least in some cases, the neurodevelopmental deficit seen in the 22q11.2 microduplication syndrome could be the consequence of a disorder of cerebral electrogenesis, suggesting the need for an EEG recording in affected individuals. Moreover, an array-CGH analysis should be performed in all individuals with cryptogenic epilepsy and CSWS.
    Epilepsy & Behavior 11/2012; 25(4):567-572. DOI:10.1016/j.yebeh.2012.09.035 · 2.06 Impact Factor

Preview (3 Sources)

1 Download
Available from