Binding and pK(a) Modulation of a Polycyclic Substrate Analogue in a Type II Polyketide Acyl Carrier Protein

Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0358, United States.
ACS Chemical Biology (Impact Factor: 5.33). 02/2011; 6(5):413-8. DOI: 10.1021/cb200004k
Source: PubMed


Type II polyketide synthases are biosynthetic enzymatic pathways responsible for the production of complex aromatic natural products with important biological activities. In these systems, biosynthetic intermediates are covalently bound to a small acyl carrier protein that associates with the synthase enzymes and delivers the bound intermediate to each active site. In the closely related fatty acid synthases of bacteria and plants, the acyl carrier protein acts to sequester and protect attached intermediates within its helices. Here we investigate the type II polyketide synthase acyl carrier protein from the actinorhodin biosynthetic pathway and demonstrate its ability to internalize the tricyclic, polar molecule emodic acid. Elucidating the interaction of acyl carrier proteins with bound analogues resembling late-stage intermediates in the actinorhodin pathway could prove valuable in efforts to engineer these systems toward rational design and biosynthesis of novel compounds.

12 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aromatic polyketides comprise an important class of natural products that possess a wide range of biological activities. The cyclization of the polyketide chain is a critical control point in the biosynthesis of aromatic polyketides. The aromatase/cyclases (ARO/CYCs) are an important component of the type II polyketide synthase (PKS) and help fold the polyketide for regiospecific cyclizations of the first ring and/or aromatization, promoting two commonly observed first-ring cyclization patterns for the bacterial type II PKSs: C7-C12 and C9-C14. We had previously reported the crystal structure and enzymological analyses of the TcmN ARO/CYC, which promotes C9-C14 first-ring cyclization. However, how C7-C12 first-ring cyclization is controlled remains unresolved. In this work, we present the 2.4 Å crystal structure of ZhuI, a C7-C12-specific first-ring ARO/CYC from the type II PKS pathway responsible for the production of the R1128 polyketides. Though ZhuI possesses a helix-grip fold shared by TcmN ARO/CYC, there are substantial differences in overall structure and pocket residue composition that may be important for directing C7-C12 (rather than C9-C14) cyclization. Docking studies and site-directed mutagenesis coupled to an in vitro activity assay demonstrate that ZhuI pocket residues R66, H109, and D146 are important for enzyme function. The ZhuI crystal structure helps visualize the structure and putative dehydratase function of the didomain ARO/CYCs from KR-containing type II PKSs. The sequence-structure-function analysis described for ZhuI elucidates the molecular mechanisms that control C7-C12 first-ring polyketide cyclization and builds a foundation for future endeavors into directing cyclization patterns for engineered biosynthesis of aromatic polyketides.
    Biochemistry 08/2011; 50(39):8392-406. DOI:10.1021/bi200593m · 3.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein-protein interactions play an integral role in metabolic regulation. Elucidation of these networks is complicated by the changing identity of the proteins themselves. Here we demonstrate a resin-based technique that leverages the unique tools for acyl carrier protein (ACP) modification with non-hydrolyzable linkages. ACPs from Escherichia coli and Shewanella oneidensis MR-1 are bound to Affigel-15 with varying acyl groups attached and introduced to proteomic samples. Isolation of these binding partners is followed by MudPIT analysis to identify each interactome with the variable of ACP-tethered substrates. These techniques allow for investigation of protein interaction networks with the changing identity of a given protein target.
    Bioorganic & medicinal chemistry 10/2011; 20(2):667-71. DOI:10.1016/j.bmc.2011.10.053 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Covering: 2007 to 2011. Previous review: Nat. Prod. Rep., 2007, 24, 750Common to all FASs, PKSs and NRPSs is a remarkable component, the acyl or peptidyl carrier protein (A/PCP). These take the form of small individual proteins in type II systems or discrete folded domains in the multi-domain type I systems and are characterized by a fold consisting of three major α-helices and between 60-100 amino acids. This protein is central to these biosynthetic systems and it must bind and transport a wide variety of functionalized ligands as well as mediate numerous protein-protein interactions, all of which contribute to efficient enzyme turnover. This review covers the structural and biochemical characterization of carrier proteins, as well as assessing their interactions with different ligands, and other synthase components. Finally, their role as an emerging tool in biotechnology is discussed.
    Natural Product Reports 08/2012; 29(10):1111-37. DOI:10.1039/c2np20062g · 10.11 Impact Factor
Show more


12 Reads
Available from