The metabolomic profile during isoflurane anesthesia differs from propofol anesthesia in the live rodent brain

Department of Anesthesiology, Health Sciences Center, Stony Brook University, Stony Brook, New York 11794, USA.
Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism (Impact Factor: 5.41). 01/2011; 31(6):1432-42. DOI: 10.1038/jcbfm.2011.1
Source: PubMed


Development of noninvasive techniques to discover new biomarkers in the live brain is important to further understand the underlying metabolic pathways of significance for processes such as anesthesia-induced apoptosis and cognitive dysfunction observed in the undeveloped brain. We used in vivo proton magnetic resonance spectroscopy and two different signal processing approaches to test the hypothesis that volatile (isoflurane) and intravenous (propofol) anesthetics at equipotent doses produce distinct metabolomic profiles in the hippocampus and parietal cortex of the live rodent. For both brain regions, prolonged isoflurane anesthesia was characterized by higher levels of lactate (Lac) and glutamate compared with long-lasting propofol. In contrast, propofol anesthesia was characterized by very low concentrations of Lac ([lac]) as well as glucose. Quantitative analysis revealed that the [lac] was fivefold higher with isoflurane compared with propofol anesthesia and independent of [lac] in blood. The metabolomic profiling further demonstrated that for both brain regions, Lac was the most important metabolite for the observed differences, suggesting activation of distinct metabolic pathways that may impact mechanisms of action, background cellular functions, and possible agent-specific neurotoxicity.

Download full-text


Available from: Rany Makaryus, Aug 14, 2014
27 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: We recently applied proton magnetic resonance spectroscopy (HMRS) to investigate metabolic consequences of general anesthesia in the rodent brain, and discovered that isoflurane anesthesia was characterized by higher concentrations of lactate, glutamate, and glucose in comparison with propofol. We hypothesized that the metabolomic differences between an inhalant and intravenous anesthetic observed in the rodent brain could be reproduced in the human brain. Methods: HMRS-based metabolomic profiling was applied to characterize the cerebral metabolic status of 59 children undergoing magnetic resonance imaging during anesthesia with either sevoflurane or propofol. HMRS scans were acquired in the parietal cortex after approximately 60 min of anesthesia. Upon emergence the children were assessed using the pediatric anesthesia emergence delirium scale. Results: With sevoflurane anesthesia, the metabolic signature consisted of higher concentrations of lactate and glucose compared with children anesthetized with propofol. Further, a correlation and stepwise regression analysis performed on emergence delirium scores in relation to the metabolic status revealed that lactate and glucose correlated positively and total creatine negatively with the emergence delirium score. Conclusions: Our results demonstrating higher glucose and lactate with sevoflurane in the human brain compared with propofol could reflect greater neuronal activity with sevofluane resulting in enhanced glutamate-neurotransmitter cycling, increased glycolysis, and lactate shuttling from astrocytes to neurons or mitochondrial dysfunction. Further, the association between emergence delirium and lactate suggests that anesthesia-induced enhanced cortical activity in the unconscious state may interfere with rapid return to "coherent" brain connectivity patterns required for normal cognition upon emergence of anesthesia.
    Anesthesiology 08/2012; 117(5):1062-1071. DOI:10.1097/ALN.0b013e31826be417 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium signaling represents the principle pathway by which astrocytes respond to neuronal activity. General anesthetics are routinely used in clinical practice to induce a sleep-like state, allowing otherwise painful procedures to be performed. Anesthetic drugs are thought to mainly target neurons in the brain and act by suppressing synaptic activity. However, the direct effect of general anesthesia on astrocyte signaling in awake animals has not previously been addressed. This is a critical issue, because calcium signaling may represent an essential mechanism through which astrocytes can modulate synaptic activity. In our study, we performed calcium imaging in awake head-restrained mice and found that three commonly used anesthetic combinations (ketamine/xylazine, isoflurane, and urethane) markedly suppressed calcium transients in neocortical astrocytes. Additionally, all three anesthetics masked potentially important features of the astrocyte calcium signals, such as synchronized widespread transients that appeared to be associated with arousal in awake animals. Notably, anesthesia affected calcium transients in both processes and soma and depressed spontaneous signals, as well as calcium responses, evoked by whisker stimulation or agonist application. We show that these calcium transients are inositol 1,4,5-triphosphate type 2 receptor (IP(3)R2)-dependent but resistant to a local blockade of glutamatergic or purinergic signaling. Finally, we found that doses of anesthesia insufficient to affect neuronal responses to whisker stimulation selectively suppressed astrocyte calcium signals. Taken together, these data suggest that general anesthesia may suppress astrocyte calcium signals independently of neuronal activity. We propose that these glial effects may constitute a nonneuronal mechanism for sedative action of anesthetic drugs.
    Proceedings of the National Academy of Sciences 10/2012; 109(46). DOI:10.1073/pnas.1209448109 · 9.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vivo localized high-resolution (1) H MR spectroscopy was performed in multiple brain regions without the use of anesthetic or paralytic agents in awake head-restrained rats that were previously trained in a simulated MRI environment using a 7T MR system. Spectra were obtained using a short echo time single-voxel point-resolved spectroscopy technique with voxel size ranging from 27 to 32.4 mm(3) in the regions of anterior cingulate cortex, somatosensory cortex, hippocampus, and thalamus. Quantifiable spectra, without the need for any additional postprocessing to correct for possible motion, were reliably detected including the metabolites of interest such as γ-aminobutyric acid, glutamine, glutamate, myo-inositol, N-acetylaspartate, taurine, glycerophosphorylcholine/phosphorylcholine, creatine/phosphocreatine, and N-acetylaspartate/N-acetylaspartylglutamate. The spectral quality was comparable to spectra from anesthetized animals with sufficient spectral dispersion to separate metabolites such as glutamine and glutamate. Results from this study suggest that reliable information on major metabolites can be obtained without the confounding effects of anesthesia or paralytic agents in rodents. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.
    Magnetic Resonance in Medicine 04/2013; 69(4). DOI:10.1002/mrm.24321 · 3.57 Impact Factor
Show more