Article

Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung.

School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland.
Respiratory research (Impact Factor: 3.64). 01/2011; 12:17. DOI: 10.1186/1465-9921-12-17
Source: PubMed

ABSTRACT Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium.
Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay.
Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic.
VEGFB and PlGF can either inhibit or potentiate the actions of VEGFA, depending on their relative concentrations, which change in the hypoxic lung. Thus their actions in vivo depend on their specific concentrations within the microenvironment of the alveolar wall during the course of adaptation to pulmonary hypoxia.

0 Bookmarks
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies have proved that hypoxia enhances the 15-lipoxygenase (15-LO) expression and increases endogenous 15-hydroxyeicosatetraenoic acid (15-HETE) production to promote pulmonary vascular remodeling and angiogenesis, while the mechanisms of how hypoxia regulates 15-LO expression in endothelium is still unknown. As placenta growth factor (PlGF) promotes pathological angiogenesis by acting on the growth, migration and survival of endothelial cells, there may be some connections between PlGF and 15-LO in hypoxia induced endothelial cells proliferation. In this study, we performed immunohistochemistry, pulmonary artery endothelial cells migration and bromodeoxyuridine incorporation to determine the role of PlGF in pulmonary remodeling induced by hypoxia. Our results showed that hypoxia up-regulated PlGF expression, which was mediated by 15-LO/15-HETE pathway. Furthermore, we found that PlGF had a positive feedback regulation with 15-LO expression and 15-HETE generation. The interaction in hypoxia between 15-HETE and PlGF created a PlGF-15-LO-15-HETE loop, leading to endothelial dysfunction. Thus, these findings suggest a new therapeutic agent in combination with the blockade of PlGF as well as 15-LO in hypoxic pulmonary hypertension.
    Prostaglandins Leukotrienes and Essential Fatty Acids 08/2013; · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Chronic obstructive pulmonary disease (COPD) is characterized by progressive airway obstruction resultant from an augmented inflammatory response of the respiratory tract to noxious particles and gases. Previous reports present a number of different hypotheses about the etiology and pathophysiology of COPD. The generating mechanisms of the disease are subject of much speculation, and a series of questions and controversies among experts still remain. In this context, several experimental models have been proposed in order to broaden the knowledge on the pathophysiological characteristics of the disease, as well as the search for new therapeutic approaches for acute or chronically injured lung tissue. This review aims to present the main experimental models of COPD, more specifically emphysema, as well as to describe the main characteristics, advantages, disadvantages, possibilities of application, and potential contribution of each of these models for the knowledge on the pathophysiological aspects and to test new treatment options for obstructive lung diseases.
    Experimental Lung Research 05/2014; · 1.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis and lymphangiogenesis are key mechanisms for tumor growth and dissemination. They are mainly regulated by the vascular endothelial growth factor (VEGF) family of ligands and receptors. The aim of this study was to analyze relative expression levels of angiogenic markers in resectable non-small cell lung cancer patients in order to asses a prognostic signature that could improve characterization of patients with worse clinical outcomes. RNA was obtained from tumor and normal lung specimens from 175 patients. Quantitative polymerase chain reaction was performed to analyze the relative expression of HIF1A, PlGF, VEGFA, VEGFA165b, VEGFB, VEGFC, VEGFD, VEGFR1, VEGFR2, VEGFR3, NRP1 and NRP2. Univariate analysis showed that tumor size and ECOG-PS are prognostic factors for time to progression (TTP) and overall survival (OS). This analysis in the case of angiogenic factors also revealed that PlGF, VEGFA, VEGFB and VEGFD distinguish patients with different outcomes. Taking into account the complex interplay between the different ligands of the VEGF family and to more precisely predict the outcome of the patients, we considered a new analysis combining several VEGF ligands. In order to find independent prognostic variables, we performed a multivariate Cox analysis, which showed that the subgroup of patients with higher relative expression of VEGFA plus lower VEGFB and VEGFD presented the poorest outcome for both TTP and OS. The relative expression of these three genes can be considered as an angiogenic gene signature whose applicability for the selection of candidates for targeted therapies needs to be further validated.
    Annals of Surgical Oncology 10/2013; · 4.12 Impact Factor

Full-text (3 Sources)

View
24 Downloads
Available from
Jun 2, 2014