Article

Aberrant microRNA expression in human cervical carcinomas.

Department of Gynecologic Oncology, The Second Affiliated Hospital of SunYat-sen University, 510120 Guangzhou, People's Republic of China.
Medical Oncology (Impact Factor: 2.14). 01/2011; 29(2):1242-8. DOI: 10.1007/s12032-011-9830-2
Source: PubMed

ABSTRACT Because altered microRNAs (miRNAs) expression patterns have been observed in a variety of diseased tissues, miRNA expression was compared in human cervical cancer tissues relative to adjacent normal cervical tissues in the present study. Microarray chips with 924 probes were used to detect the expression of miRNAs in cervical cancer tissue and adjacent normal cervical tissue of 13 patients with cervical cancer (11 squamous cervical cancers, one cervical adenocarcinoma, and one cervical sarcoma), all of whom were infected with human papilloma virus (HPV) 16 and/or HPV18. Compared to the expression levels in normal cervical tissues, 18 miRNAs (1.9%) were significantly upregulated (increase of ≥2×), and 19 miRNAs (2.1%) were significantly downregulated (decrease of ≤0.5×) in cervical cancer tissues. miRNA expression was independent of lymph node involvement, vascular invasion, and pathological differentiation. Taken together, cervical cancer tissues have altered expression of miRNAs relative to adjacent normal tissues. Further studies are necessary to determine whether aberrant miRNA expression is related to the pathogenesis of cervical cancer.

0 Bookmarks
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant miRNA expression is well recognized as an important step in the development of cancer. Close to 70 microRNAs (miRNAs) have been implicated in cervical cancer up to now, nevertheless it is unknown if aberrant miRNA expression causes the onset of cervical cancer. One of the best ways to address this issue is through a multistep model of carcinogenesis. In the progression of cervical cancer there are three well-established steps to reach cancer that we used in the model proposed here. The first step of the model comprises the gene changes that occur in normal cells to be transformed into immortal cells (CIN 1), the second comprises immortal cell changes to tumorigenic cells (CIN 2), the third step includes cell changes to increase tumorigenic capacity (CIN 3), and the final step covers tumorigenic changes to carcinogenic cells. Altered miRNAs and their target genes are located in each one of the four steps of the multistep model of carcinogenesis. miRNA expression has shown discrepancies in different works; therefore, in this model we include miRNAs recording similar results in at least two studies. The present model is a useful insight into studying potential prognostic, diagnostic, and therapeutic miRNAs.
    International Journal of Molecular Sciences 01/2014; 15(9):15700-15733. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of recent studies have catalogued global gene expression patterns in a panel of normal, tumoral cervical tissues so that potential biomarkers can be identified. The qPCR has been one of the most widely used technologies for detecting these potential biomarkers. However, few studies have investigated a correct strategy for the normalization of data in qPCR assays for cervical tissues. The aim of this study was to validate reference genes in cervical tissues to ensure accurate quantification of mRNA and miRNA levels in cervical carcinogenesis. For this purpose, some issues for obtaining reliable qPCR data were evaluated such as the following: geNorm analysis with a set of samples which meet all of the cervical tissue conditions (Normal + CIN1 + CIN2 + CIN3 + Cancer); the use of individual Ct values versus pooled Ct values; and the use of a single (or multiple) reference genes to quantify mRNA and miRNA expression levels. Two different data sets were put on the geNorm to assess the expression stability of the candidate reference genes: the first dataset comprised the quantities of the individual Ct values; and the second dataset comprised the quantities of the pooled Ct values. Moreover, in this study, all the candidate reference genes were analyzed as a single “normalizer”. The normalization strategies were assessed by measuring p16INK4a and miR-203 transcripts in qPCR assays. We found that the use of pooled Ct values, can lead to a misinterpretation of the results, which suggests that the maintenance of inter-individual variability is a key factor in ensuring the reliability of the qPCR data. In addition, it should be stressed that a proper validation of the suitability of the reference genes is required for each experimental setting, since the indiscriminate use of a reference gene can also lead to discrepant results.
    PLoS ONE 11/2014; 9(11):e111021. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNA (miRNA) expression is known to be deregulated in cervical carcinomas. However, no data is available about the miRNA expression pattern for the minimal deviation adenocarcinoma (MDA) of uterine cervix. We sought to detect deregulated miRNAs in MDA in an attempt to find the most dependable miRNA or their combinations to understand their tumorigenesis pathway and to identify diagnostic or prognostic biomarkers. We also investigated the association between those miRNAs and their target genes, especially Notch1 and Notch2.
    World Journal of Surgical Oncology 11/2014; 12(1):334. · 1.09 Impact Factor