Article

Maternal Microbe-Specific Modulation of Inflammatory Response in Extremely Low-Gestational-Age Newborns

Laboratory of Genital Tract Biology, Department of Obstetrics and Gynecology, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA.
mBio (Impact Factor: 6.88). 12/2011; 2(1):e00280-10. DOI: 10.1128/mBio.00280-10
Source: PubMed

ABSTRACT The fetal response to intrauterine inflammatory stimuli appears to contribute to the onset of preterm labor as well as fetal injury, especially affecting newborns of extremely low gestational age. To investigate the role of placental colonization by specific groups of microorganisms in the development of inflammatory responses present at birth, we analyzed 25 protein biomarkers in dry blood spots obtained from 527 newborns delivered by Caesarean section in the 23rd to 27th gestation weeks. Bacteria were detected in placentas and characterized by culture techniques. Odds ratios for having protein concentrations in the top quartile for gestation age for individual and groups of microorganisms were calculated. Mixed bacterial vaginosis (BV) organisms were associated with a proinflammatory pattern similar to those of infectious facultative anaerobes. Prevotella and Gardnerella species, anaerobic streptococci, peptostreptococci, and genital mycoplasmas each appeared to be associated with a different pattern of elevated blood levels of inflammation-related proteins. Lactobacillus was associated with low odds of an inflammatory response. This study provides evidence that microorganisms colonizing the placenta provoke distinctive newborn inflammatory responses and that Lactobacillus may suppress these responses.

0 Followers
 · 
131 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intestinal microbiota has become a relevant aspect of human health. Microbial colonization runs in parallel with immune system maturation and plays a role in intestinal physiology and regulation. Increasing evidence on early microbial contact suggest that human intestinal microbiota is seeded before birth. Maternal microbiota forms the first microbial inoculum, and from birth, the microbial diversity increases and converges toward an adult-like microbiota by the end of the first 3-5 years of life. Perinatal factors such as mode of delivery, diet, genetics, and intestinal mucin glycosylation all contribute to influence microbial colonization. Once established, the composition of the gut microbiota is relatively stable throughout adult life, but can be altered as a result of bacterial infections, antibiotic treatment, lifestyle, surgical, and a long-term change in diet. Shifts in this complex microbial system have been reported to increase the risk of disease. Therefore, an adequate establishment of microbiota and its maintenance throughout life would reduce the risk of disease in early and late life. This review discusses recent studies on the early colonization and factors influencing this process which impact on health.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progress in our understanding of the role of the maternal immune system during healthy pregnancy will help us better understand the role of the immune system in adverse pregnancy outcomes. In this review, we discuss our present understanding of the 'immunity of pregnancy' in the context of the response to cervical and placental infections and how these responses affect both the mother and the fetus. We discuss novel and challenging concepts that help explain the immunological aspects of pregnancy and how the mother and fetus respond to infection.
    American journal of reproductive immunology (New York, N.Y.: 1989) 07/2014; DOI:10.1111/aji.12289 · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elevated thyrotropin (TSH) levels in critically ill extremely premature infants have been attributed to transient hypothyroidism of prematurity or non-thyroidal illness syndrome. We evaluated the hypothesis that relatively high TSH levels in the first 2 postnatal weeks follow recovery from systemic inflammation, similar to non-thyroidal illness syndrome. The study was conducted in 14 Neonatal Intensive Care Units and approved by each individual Institutional Review Board. We measured the concentrations of TSH and 25 inflammation-related proteins in blood spots obtained on postnatal days 1, 7, and 14. We then evaluated the temporal relationships between hyperthyrotropinemia (HTT), defined as a TSH concentration in the highest quartile for gestational age and postnatal day, and elevated levels of inflammation-related proteins. 880 newborns less than 28 weeks of gestation were included. Elevated concentrations of inflammation-related proteins during the first or second week did not precede day-14 HTT. Systemic inflammation on day 7 was associated with day-14 HTT only if inflammation persisted through the end of the 2 week period. HTT frequently accompanied elevated concentrations of inflammation-related proteins on the same day. The hypothesis that HTT follows recovery from severe illness, defined as preceding systemic inflammation, is weakly supported by our study. Our findings more prominently support the hypothesis that TSH conveys information about concomitant inflammation in the extremely premature newborn.
    Endocrine 07/2014; DOI:10.1007/s12020-014-0329-4 · 3.53 Impact Factor

Full-text (4 Sources)

Download
45 Downloads
Available from
May 17, 2014