Gyrification and neural connectivity in schizophrenia.

Erasmus Medical Centre, Rotterdam, The Netherlands.
Development and Psychopathology (Impact Factor: 4.89). 02/2011; 23(1):339-52. DOI: 10.1017/S0954579410000842
Source: PubMed

ABSTRACT There is emerging evidence for a connection between the surface morphology of the brain and its underlying connectivity. The foundation for this relationship is thought to be established during brain development through the shaping influences of tension exerted by viscoelastic nerve fibers. The tension-based morphogenesis results in compact wiring that enhances efficient neural processing. Individuals with schizophrenia present with multiple symptoms that can include impaired thought, action, perception, and cognition. The global nature of these symptoms has led researchers to explore a more global disruption of neuronal connectivity as a theory to explain the vast array of clinical and cognitive symptoms in schizophrenia. If cerebral function and form are linked through the organization of neural connectivity, then a disruption in neural connectivity may also alter the surface morphology of the brain. This paper reviews developmental theories of gyrification and the potential interaction between gyrification and neuronal connectivity. Studies of gyrification abnormalities in children, adolescents, and adults with schizophrenia demonstrate a relationship between disrupted function and altered morphology in the surface patterns of the cerebral cortex. This altered form may provide helpful clues in understanding the neurobiological abnormalities associated with schizophrenia.

  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a growing consensus that a symptomatology as complex and heterogeneous as schizophrenia is likely to be produced by widespread perturbations of brain structure, as opposed to isolated deficits in specific brain regions. Structural brain-imaging studies have shown that several features of the brain, such as grey matter, white matter integrity and the morphology of the cortex differ in individuals at high risk of the disorder compared to controls, but to a lesser extent than in patients, suggesting that structural abnormalities may form markers of vulnerability to the disorder. Research has had some success in delineating abnormalities specific to those individuals that transition to psychosis, compared to those at high risk that do not, suggesting that a general risk for the disorder can be distinguished from alterations specific to frank psychosis. In this paper, we review cross-sectional and longitudinal studies of individuals at familial or clinical high risk of the disorder. We conclude that the search for reliable markers of schizophrenia is likely to be enhanced by methods which amalgamate structural neuroimaging data into a coherent framework that takes into account the widespread distribution of brain alterations, and relates this to leading hypotheses of schizophrenia.
    Journal of Psychopharmacology 07/2014; 29(2). DOI:10.1177/0269881114541015 · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phenotypic and genetic relationship between global cortical size and general cognitive ability (GCA) appears to be driven by surface area (SA) and not cortical thickness (CT). Gyrification (cortical folding) is an important property of the cortex that helps to increase SA within a finite space, and may also improve connectivity by reducing distance between regions. Hence, gyrification may be what underlies the SA-GCA relationship. In previous phenotypic studies, a 3-dimensional gyrification index (3DGI) has been positively associated with cognitive ability and negatively associated with mild cognitive impairment, Alzheimer's disease, and psychiatric disorders affecting cognition. However, the differential genetic associations of 3DGI and SA with GCA are still unclear. We examined the heritability of 3DGI, and the phenotypic, genetic, and environmental associations of 3DGI with SA and GCA in a large sample of adult male twins (N =512). Nearly 85% of the variance in 3DGI was due to genes, and 3DGI had a strong phenotypic and genetic association with SA. Both 3DGI and total SA had positive phenotypic correlations with GCA. However, the SA-GCA correlation remained significant after controlling for 3DGI, but not the other way around. There was also significant genetic covariance between SA and GCA, but not between 3DGI and GCA. Thus, despite the phenotypic and genetic associations between 3DGI and SA, our results do not support the hypothesis that gyrification underlies the association between SA and GCA. Copyright © 2014 Elsevier Inc. All rights reserved.
    NeuroImage 11/2014; 106. DOI:10.1016/j.neuroimage.2014.11.040 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a growing body of data has revealed that beyond a dysfunction of connectivity among different brain areas in schizophrenia patients (SCZ), there is also an abnormal asymmetry of functional connectivity compared with healthy subjects. The loss of the cerebral torque and the abnormalities of gyrification, with an increased or more complex cortical folding in the right hemisphere may provide an anatomical basis for such aberrant connectivity in SCZ. Furthermore, diffusion tensor imaging studies have shown a significant reduction of leftward asymmetry in some key white-matter tracts in SCZ. In this paper, we review the studies that investigated both structural brain asymmetry and asymmetry of functional connectivity in healthy subjects and SCZ. From an analysis of the existing literature on this topic, we can hypothesize an overall generally attenuated asymmetry of functional connectivity in SCZ compared to healthy controls. Such attenuated asymmetry increases with the duration of the disease and correlates with psychotic symptoms. Finally, we hypothesize that structural deficits across the corpus callosum may contribute to the abnormal asymmetry of intra-hemispheric connectivity in schizophrenia.
    Frontiers in Human Neuroscience 12/2014; 8:1010. DOI:10.3389/fnhum.2014.01010 · 2.90 Impact Factor


Available from
Jun 2, 2014