Attention doesn't slide: spatiotopic updating after eye movements instantiates a new, discrete attentional locus.

Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
Attention Perception & Psychophysics (Impact Factor: 1.97). 01/2011; 73(1):7-14. DOI: 10.3758/s13414-010-0016-3
Source: PubMed

ABSTRACT During natural vision, eye movements can drastically alter the retinotopic (eye-centered) coordinates of locations and objects, yet the spatiotopic (world-centered) percept remains stable. Maintaining visuospatial attention in spatiotopic coordinates requires updating of attentional representations following each eye movement. However, this updating is not instantaneous; attentional facilitation temporarily lingers at the previous retinotopic location after a saccade, a phenomenon known as the retinotopic attentional trace. At various times after a saccade, we probed attention at an intermediate location between the retinotopic and spatiotopic locations to determine whether a single locus of attentional facilitation slides progressively from the previous retinotopic location to the appropriate spatiotopic location, or whether retinotopic facilitation decays while a new, independent spatiotopic locus concurrently becomes active. Facilitation at the intermediate location was not significant at any time, suggesting that top-down attention can result in enhancement of discrete retinotopic and spatiotopic locations without passing through intermediate locations.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Visual processing takes place in both retinotopic and spatiotopic frames of reference. Whereas visual perceptual learning is usually specific to the trained retinotopic location, our recent study has shown spatiotopic specificity of learning in motion direction discrimination. To explore the mechanisms underlying spatiotopic processing and learning, and to examine whether similar mechanisms also exist in visual form processing, we trained human subjects to discriminate an orientation difference between two successively displayed stimuli, with a gaze shift in between to manipulate their positional relation in the spatiotopic frame of reference without changing their retinal locations. Training resulted in better orientation discriminability for the trained than for the untrained spatial relation of the two stimuli. This learning-induced spatiotopic preference was seen only at the trained retinal location and orientation, suggesting experience-dependent spatiotopic form processing directly based on a retinotopic map. Moreover, a similar but weaker learning-induced spatiotopic preference was still present even if the first stimulus was rendered irrelevant to the orientation discrimination task by having the subjects judge the orientation of the second stimulus relative to its mean orientation in a block of trials. However, if the first stimulus was absent, and thus no attention was captured before the gaze shift, the learning produced no significant spatiotopic preference, suggesting an important role of attentional remapping in spatiotopic processing and learning. Taken together, our results suggest that spatiotopic visual representation can be mediated by interactions between retinotopic processing and attentional remapping, and can be modified by perceptual training.
    European Journal of Neuroscience 10/2013; · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When saccadic eye movements consistently fail to land on their intended target, saccade accuracy is maintained by gradually adapting the movement size of successive saccades. The proposed error signal for saccade adaptation has been based on the distance between where the eye lands and the visual target (retinal error). We studied whether the error signal could alternatively be based on the distance between the predicted and actual locus of attention after the saccade. Unlike conventional adaptation experiments that surreptitiously displace the target once a saccade is initiated towards it, we instead attempted to draw attention away from the target by briefly presenting salient distractor images on one side of the target after the saccade. To test whether less salient, more predictable distractors would induce less adaptation, we separately used fixed random noise distractors. We found that both visual attention distractors were able to induce a small degree of downward saccade adaptation but significantly more to the more salient distractors. As in conventional adaptation experiments, upward adaptation was less effective and salient distractors did not significantly increase amplitudes. We conclude that the locus of attention after the saccade can act as an error signal for saccade adaptation.
    Journal of ophthalmology. 01/2014; 2014:585792.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Saccadic eye movements are a major source of disruption to visual stability, yet we experience little of this disruption. We can keep track of the same object across multiple saccades. It is generally assumed that visual stability is due to the process of remapping, in which retinotopically organized maps are updated to compensate for the retinal shifts caused by eye movements. Recent behavioral and ERP evidence suggests that visual attention is also remapped, but that it may still leave a residual retinotopic trace immediately after a saccade. The current study was designed to further examine electrophysiological evidence for such a retinotopic trace by recording ERPs elicited by stimuli that were presented immediately after a saccade (80 msec SOA). Participants were required to maintain attention at a specific location (and to memorize this location) while making a saccadic eye movement. Immediately after the saccade, a visual stimulus was briefly presented at either the attended location (the same spatiotopic location), a location that matched the attended location retinotopically (the same retinotopic location), or one of two control locations. ERP data revealed an enhanced P1 amplitude for the stimulus presented at the retinotopically matched location, but a significant attenuation for probes presented at the original attended location. These results are consistent with the hypothesis that visuospatial attention lingers in retinotopic coordinates immediately following gaze shifts.
    Journal of Cognitive Neuroscience 03/2013; · 4.49 Impact Factor

Full-text (3 Sources)

Available from
May 22, 2014