Article

Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on titanium: a gene expression study using real-time RT-PCR.

Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Material Science and Metallurgy, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028, Barcelona, Spain.
Journal of Materials Science Materials in Medicine (Impact Factor: 2.14). 01/2011; 22(3):617-27. DOI: 10.1007/s10856-011-4229-3
Source: PubMed

ABSTRACT Biomaterial surface properties, via alterations in the adsorbed protein layer, and the presence of specific functional groups can influence integrin binding specificity, thereby modulating cell adhesion and differentiation processes. The adsorption of fibronectin, a protein directly involved in osteoblast adhesion to the extracellular matrix, has been related to different physical and chemical properties of biomaterial surfaces. This study used blasting particles of different sizes and chemical compositions to evaluate the response of MG63 osteoblast-like cells on smooth and blasted titanium surfaces, with and without fibronectin coatings, by means of real-time reverse transcription-polymerase chain reaction (qRT-PCR) assays. This response included (a) expression of the α(5), α(v) and α(3) integrin subunits, which can bind to fibronectin through the RGD binding site, and (b) expression of alkaline phosphatase (ALP) and osteocalcin (OC) as cell-differentiation markers. ALP activity and synthesis of OC were also tested. Cells on SiC-blasted Ti surfaces expressed higher amounts of the α(5) mRNA gene than cells on Al(2)O(3)-blasted Ti surfaces. This may be related to the fact that SiC-blasted surfaces adsorbed higher amounts of fibronectin due to their higher surface free energy and therefore provided a higher number of specific cell-binding sites. Fn-coated Ti surfaces decreased α(5) mRNA gene expression, by favoring the formation of other integrins involved in adhesion over α(5)β(1). The changes in α(5) mRNA expression induced by the presence of fibronectin coatings may moreover influence the osteoblast differentiation pathway, as fibronectin coatings on Ti surfaces also decreased both ALP mRNA expression and ALP activity after 14 and 21 days of cell culture.

0 Bookmarks
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: A number of environmental and patient-related factors contribute to implant failure. A significant fraction of these failures can be attributed to limited osseointegration resulting from poor bone healing responses. The overall goal of this study was to determine whether surface treatment of a titanium-aluminum-vanadium alloy (Ti-6Al-4V) implant material in combination with a biomimetic protein coating could promote the differentiation of attached osteoblastic cells. The specific aims of the study were to investigate whether osteoprogenitor cells cultured on a rigorously cleaned implant specimen showed a normal pattern of differentiation and whether preadsorbed fibronectin accelerated or enhanced osteoblast differentiation. Materials and Methods: Ti-6Al-4V disks were rigorously cleaned, passivated in nitric acid, and dry heat- sterilized; some of the disks were then coated with 1 nmol/L fibronectin. MC3T3 osteoprogenitor cells were then cultured on the pretreated disks for several weeks. Quantitative real-time polymerase chain reaction was performed to measure changes over time in the mRNA levels of osteoblast genes. Results: Fibronectin increased the peak expression of all analyzed osteoblast gene markers. "Early" genes that normally mark the proliferative phase (0 to 10 days) of osteoblastic development showed peak expression within the first 10 days after cell attachment to the titanium alloy. In contrast, "late" genes that normally mark the differentiation (10 to 20 days) and mineralization (20 to 36 days) phases of osteoblastogenesis achieved peak expression only after approximately 3 to 4 weeks of culture. Conclusions: Osteoprogenitors cultured on a rigorously cleaned Ti-6Al-4V alloy were found to demonstrate a normal pattern of osteoblast differentiation. Preadsorbed fibronectin was observed to stimulate osteoblast differentiation during the mineralization phase of osteoblastogenesis.
    The International journal of oral & maxillofacial implants 09/2012; 27(5):1081-90. · 1.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, integrin expression, proliferation, and endothelial differentiation of adipose-derived stem cells (ADSCs) on pristine cobalt chrome (CoCr) surface, microstructured and nanostructured CoCr surfaces (obtained after treatment with piranha solution) were investigated. The results showed that proliferation of ADSCs on the substrates treated with piranha solution is not significantly different from that on the pristine substrates. However, quantitative real-time PCR analysis showed significantly enhanced up-regulation of CD31, vWF and eNOS from gene level by ADSCs on the nanostructured substrates but not on the microstructured substrates. The adsorption of vitronectin from the culture medium on the nanostructured substrates was higher than on the pristine and microstructured substrates. We speculate that this results in increased integrin α(v)β(3) expression in the ADSCs, which may contribute partially to the enhanced endothelial differentiation of ADSCs on the nanostructured substrates. This study shows that ADSCs can be used to endothelialize stents in vitro and the endothelial differentiation of ADSC is enhanced on the nanostructured surfaces.
    Journal of Materials Science Materials in Medicine 01/2013; · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: The main purpose of this work was to assess the short-term bone regenerative potential of new osteoconductive implants. The novelty of the study lies in the analysis of the effectiveness of a novel two-step treatment which combines shot-blasting with a thermo-chemical treatment, at very short times after implant placement in a minipig model. MATERIALS AND METHODS: Three hundred twenty implants with four different surface treatments, namely bioactivated surfaces, micro-rough grit-blasted, micro-rough acid-etched and smooth as-machined titanium implants were placed into the bone of 20 minipigs. The percent of bone-to-implant contact was determined 3 days, 1, 2, 3 and 10 weeks after implant placement by histomorphometric analysis. Surface composition, topography and wettability of the implant specimens were analysed. RESULTS: The combination of shot-blasting and thermo-chemical treatment accelerated bone regeneration at early stages in comparison with all other treatments between day 3 and week 3 (p < 0.05). The value of osseointegration attained at week 2 was maintained until the end of the experiment without any significant changes (percent direct contact ≈ 85 %). This was mostly attributed to the ability of these implants to form in vivo a layer of apatitic mineral that coated the implant and could rapidly stimulate bone nucleation and growth from the implant surface. CONCLUSIONS: The surface quality resulting from this treatment on cpTi provided dental implants with a unique ability of rapid bone regeneration and osseointegration. CLINICAL RELEVANCE: This treatment represents a step forward in the direction of reducing the time prior to implant loading.
    Clinical Oral Investigations 03/2013; · 2.20 Impact Factor

Full-text

View
26 Downloads
Available from
Jun 3, 2014