Differential Expression of NLRP3 among Hematopoietic Cells

Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.
The Journal of Immunology (Impact Factor: 5.36). 02/2011; 186(4):2529-34. DOI: 10.4049/jimmunol.1002720
Source: PubMed

ABSTRACT Although the importance of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in health and disease is well appreciated, a precise characterization of NLRP3 expression is yet undetermined. To this purpose, we generated a knock-in mouse in which the Nlrp3 coding sequence was substituted for the GFP (enhanced GFP [egfp]) gene. In this way, the expression of eGFP is driven by the endogenous regulatory elements of the Nlrp3 gene. In this study, we show that eGFP expression indeed mirrors that of NLRP3. Interestingly, splenic neutrophils, macrophages, and, in particular, monocytes and conventional dendritic cells showed robust eGFP fluorescence, whereas lymphoid subsets, eosinophils, and plasmacytoid dendritic cells showed negligible eGFP levels. NLRP3 expression was highly inducible in macrophages, both by MyD88- and Trif-dependent pathways. In vivo, when mice were challenged with diverse inflammatory stimuli, differences in both the number of eGFP-expressing cells and fluorescence intensity were observed in the draining lymph node. Thus, NLRP3 levels at the site of adaptive response initiation are controlled by recruitment of NLRP3-expressing cells and by NLRP3 induction.


Available from: Kate Schroder, Apr 22, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The NLRP3/caspase-1 inflammasome pathway plays an important role in cellular immune defence against bacterial infection; however, its function in human dental pulp tissue and human dental pulp fibroblasts remains poorly understood. We demonstrate that NLRP3 protein expression occurs to a greater extent in pulp tissue with irreversible pulpitis than in normal pulp tissue and in tissue with reversible pulpitis. Caspase-1 is present in its active (cleaved) form only in pulp tissue with irreversible pulpitis. NLRP3 and caspase-1 are expressed in the odontoblast layers in normal human dental pulp tissue, whereas in inflamed pulp tissue, the odontoblast layers are disrupted and dental pulp cells are positive for NLRP3 and caspase-1. Additionally, we investigate the role of the NLRP3/caspase-1 inflammasome pathway in human dental pulp fibroblasts and show that ATP activates the P2X7 receptor on the cell membrane triggering K(+) efflux and inducing the gradual recruitment of the membrane pore pannexin-1. Extracellular lipopolysaccharide is able to penetrate the cytosol and activate NLRP3. Furthermore, the low intracellular K(+) concentration in the cytosol triggers reactive oxygen species generation, which also induces the NLRP3 inflammasome. Thus, the NLRP3/caspase-1 pathway has a biological role in the innate immune response mounted by human dental pulp fibroblasts.
    Cell and Tissue Research 02/2015; DOI:10.1007/s00441-015-2118-7 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NLRP3 is the most crucial member of the NLR family, as it detects the existence of pathogen invasion and self-derived molecules associated with cellular damage. Several studies have reported that excessive NLRP3 inflammasome-mediated caspase-1 activation is a key factor in the development of diseases. Recent studies have reported that Syk is involved in pathogen-induced NLRP3 inflammasome activation; however, the detailed mechanism linking Syk to NLRP3 inflammasome remains unclear. In this study, we showed that Syk mediates NLRP3 stimuli-induced processing of procaspase-1 and the consequent activation of caspase-1. Moreover, the kinase activity of Syk is required to potentiate caspase-1 activation in a reconstituted NLRP3 inflammasome system in HEK293T cells. The adaptor protein ASC bridges NLRP3 with the effector protein caspase-1. Herein, we find that Syk can associate directly with ASC and NLRP3 by its kinase domain but interact indirectly with procaspase-1. Syk can phosphorylate ASC at Y146 and Y187 residues, and the phosphorylation of both residues is critical to enhance ASC oligomerization and the recruitment of procaspase-1. Together, our results reveal a new molecular pathway through which Syk promotes NLRP3 inflammasome formation, resulting from the phosphorylation of ASC. Thus, the control of Syk activity might be effective to modulate NLRP3 inflammasome activation and treat NLRP3-related immune diseases. © Society for Leukocyte Biology.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective This review will focus on the immunological aspects of adipose tissue and its potential role in development of chronic inflammation that instigates obesity-associated comorbidities.Methods The review used PubMed searches of current literature to examine adipose tissue leukocytosis.Results and Conclusions The adipose tissue of obese subjects becomes inflamed and contributes to the development of insulin resistance, type 2 diabetes, and metabolic syndrome. Numerous immune cells including B cells, T cells, macrophages, and neutrophils have been identified in adipose tissue, and obesity influences both the quantity and the nature of immune cell subtypes, which emerges as an active immunological organ capable of modifying whole-body metabolism through paracrine and endocrine mechanisms. Adipose tissue is a large immunologically active organ during obesity and displays hallmarks of both and innate and adaptive immune response. Despite the presence of hematopoietic lineage cells in adipose tissue, it is unclear whether the adipose compartment has a direct role in immune surveillance or host defense. Understanding the interactions between leukocytes and adipocytes may reveal the clinically relevant pathways that control adipose tissue inflammation and is likely to reveal mechanisms by which obesity contributes to increased susceptibility to both metabolic and certain infectious diseases.
    Obesity 01/2015; DOI:10.1002/oby.21003 · 4.39 Impact Factor