Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis

Centre de Recherche de l'Institut du Cerveau et de la Moelle, UPMC, INSERM UMR-S975, Centre National de la Recherche Scientifique (CNRS) UMR7225, Hôpital de la Pitié-Salpêtrière, Paris, France.
The FASEB Journal (Impact Factor: 5.48). 03/2011; 25(4):1295-305. DOI: 10.1096/fj.10-168633
Source: PubMed

ABSTRACT Amyloid peptide (Aβ) is generated by sequential cleavage of the amyloid precursor protein (APP) by β-secretase (Bace1) and γ-secretase. Aβ production increases after plasma membrane cholesterol loading through unknown mechanisms. To determine how APP-Bace1 proximity affects this phenomenon, we developed a fluorescence lifetime imaging microscopy-Förster resonance energy transfer (FLIM-FRET) technique for visualization of these molecules either by epifluorescence or at the plasma membrane only using total internal reflection fluorescence. Further, we used fluorescence correlation spectroscopy to determine the lipid rafts partition of APP-yellow fluorescent protein (YFP) and Bace1-green fluorescent protein (GFP) molecules at the plasma membrane of neurons. We show that less than 10 min after cholesterol exposure, Bace1-GFP/APP-mCherry proximity increases selectively at the membrane and APP relocalizes to raft domains, preceded by rapid endocytosis. After longer cholesterol exposures, APP and Bace1 are found in proximity intracellularly. We demonstrate that cholesterol loading does not increase Aβ production by having a direct impact on Bace1 catalytic activity but rather by altering the accessibility of Bace1 to its substrate, APP. This change in accessibility is mediated by clustering in lipid rafts, followed by rapid endocytosis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.
    Protein & Cell 02/2015; 6(4). DOI:10.1007/s13238-014-0131-3 · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer's disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD.
    Viruses 11/2014; 6(11):4505-4535. DOI:10.3390/v6114505 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is suspected that excess of brain cholesterol plays a role in Alzheimer's disease (AD). Membrane-associated cholesterol was shown to be increased in the brain of individuals with sporadic AD and to correlate with the severity of the disease. We hypothesized that an increase of membrane cholesterol could trigger sporadic AD early phenotypes. We thus acutely loaded the plasma membrane of cultured neurons with cholesterol to reach the 30% increase observed in AD brains. We found changes in gene expression profiles that are reminiscent of early AD stages. We also observed early AD cellular phenotypes. Indeed we found enlarged and aggregated early endosomes using confocal and electron microscopy after immunocytochemistry. In addition amyloid precursor protein vesicular transport was inhibited in neuronal processes, as seen by live-imaging. Finally transient membrane cholesterol loading lead to significantly increased amyloid-beta42 secretion. Membrane cholesterol increase in cultured neurons reproduces most early AD changes and could thus be a relevant model for deciphering AD mechanisms and identifying new therapeutic targets.
    Molecular Neurodegeneration 12/2014; 9(1):60. DOI:10.1186/1750-1326-9-60 · 5.29 Impact Factor