Recapitulation of the embryonic cardiovascular progenitor cell niche

Department of Cell and Tissue Engineering, Fraunhofer IGB, 70569 Stuttgart, Germany.
Biomaterials (Impact Factor: 8.31). 04/2011; 32(11):2748-56. DOI: 10.1016/j.biomaterials.2010.12.046
Source: PubMed

ABSTRACT Stem or progenitor cell populations are often established in unique niche microenvironments that regulate cell fate decisions. Although niches have been shown to be critical for the normal development of several tissues, their role in the cardiovascular system is poorly understood. In this study, we characterized the cardiovascular progenitor cell (CPC) niche in developing human and mouse hearts, identifying signaling pathways and extracellular matrix (ECM) proteins that are crucial for CPC maintenance and expansion. We demonstrate that collagen IV (ColIV) and β-catenin-dependent signaling are essential for maintaining and expanding undifferentiated CPCs. Since niches are three-dimensional (3D) structures, we investigated the impact of a 3D microenvironment that mimics the in vivo niche ECM. Employing electrospinning technologies, 3D in vitro niche substrates were bioengineered to serve as culture inserts. The three-dimensionality of these structures increased mouse embryonic stem cell differentiation into CPCs when compared to 2D control cultures, which was further enhanced by incorporation of ColIV into the substrates. Inhibiting p300-dependent β-catenin signals with the small molecule IQ1 facilitated further expansion of CPCs. Our study represents an innovative approach to bioengineer cardiac niches that can serve as unique 3D in vitro systems to facilitate CPC expansion and study CPC biology.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Throughout our life, long lived somatic stem cells (SSCs) regenerate adult tissues both during homeostatic processes and repair after injury. The role of aberrant regulation of SSC has also recently gained prominence in the field of cancer research. Following malignant transformation, so termed cancer stem cells (CSCs), endowed with the same properties as SSCs (i.e. the ability to both self-renew as well as generate differentiated progenitors) play a major part in tumor initiation, therapy resistance and ultimately relapse. The same signaling pathways involved in regulating SSC maintenance are also involved in the regulation of CSCs. CSCs have been demonstrated to exist in a wide array of tumor types including leukemias, brain, breast, prostate, colon etc.. Consequently, one of the key goals in cancer research over the past decade has been to develop therapeutic strategies to safely eliminate the CSC population without damaging the endogenous SSC population. A major hurdle to this goal lies in the identification of the key mechanisms that distinguish CSCs from the normal endogenous tissue stem cells. This review will discuss the discovery and of the specific CBP/catenin antagonist ICG-001 and the ongoing clinical development of the second generation CBP/catenin antagonist PRI-724. Importantly, specific CBP/catenin antagonists appear to have the ability to safely eliminate CSCs by taking advantage of an intrinsic differential preference in the way SSCs and CSCs divide.This article is protected by copyright. All rights reserved.
    Cancer Science 06/2014; 105(9). DOI:10.1111/cas.12471 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt/β-catenin signaling has been suggested to regulate proximal-distal determination of embryonic lung epithelium based upon genetically modified mouse models. The previously identified and characterized small molecule inhibitor IQ1 can pharmacologically decrease the interaction between β-catenin and its transcriptional coactivator p300, thereby enhancing the β-catenin/CBP interaction. Inhibition of the β-catenin/p300 interaction by IQ1 blocks the differentiation of embryonic stem cells and epicardial progenitor cells; however, whether differential coactivator usage by β-catenin plays a role in proximal-distal determination of lung epithelium is unknown. We examined the effects of inhibiting the β-catenin/p300 interaction with IQ1 on lung branching morphogenesis in mouse embryos in utero and mouse embryonic lung organ culture ex vivo. The phenotype of IQ1 treated lungs was analyzed by epithelial staining, histology, quantitative PCR and in situ hybridization. Inhibition of the β-catenin/p300 interaction by IQ1 disrupted the distal branching of mouse lung epithelium both in utero and ex vivo. IQ1 proximalized lung epithelium with decreased expression of the genes Bmp4 and Fgf10, hallmarks of distal lung determination, and increased expression of the proximal genes Sox2 and Scgb1a1 (CC10) as shown by quantitative PCR and in situ hybridization. The disruption of branching was reversible ex vivo as branching was reinitiated after removal of IQ1 from the media. The results demonstrate that the β-catenin/p300 interaction plays a critical role in proximal-distal determination of the epithelium in mouse lung branching morphogenesis and β-catenin/p300 inhibition pharmacologically proximalizes lung epithelium.
    12/2014; 2(1):8. DOI:10.1186/s40247-014-0008-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examined the effects of the microenvironment on vascular differentiation of murine cardiovascular progenitor cells (CPCs). We isolated CPCs and seeded them in culture exposed to the various extracellular matrix (ECM) proteins in both two-dimensional (2D) and 3D culture systems. To better understand the contribution of the microenvironment to vascular differentiation, we analyzed endothelial and smooth muscle cell differentiation at both day 7 and day 14. We found that laminin and vitronectin enhanced vascular endothelial cell differentiation while fibronectin enhanced vascular smooth muscle cell differentiation. We also observed that the effects of the 3D electrospun scaffolds were delayed and not noticeable until the later time point (day 14), which may be due to the amount of time necessary for the cells to migrate to the interior of the scaffold. The study characterized the contributions of both ECM proteins and the addition of a 3D culture system to continued vascular differentiation. Additionally, we demonstrated the capability bioengineer a CPC-derived vascular graft. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2014.
    Journal of Biomedical Materials Research Part B Applied Biomaterials 11/2014; 102(8). DOI:10.1002/jbm.b.33155 · 2.33 Impact Factor