A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study.

Department of Ophthalmology, Feinberg School of Medicine, Northwestern University and the Chicago Center for Vision Research, Chicago, Illinois 60611, USA.
American Journal of Ophthalmology (Impact Factor: 4.02). 04/2011; 151(4):671-81. DOI: 10.1016/j.ajo.2010.09.026
Source: PubMed

ABSTRACT To compare the alpha2-adrenergic agonist brimonidine tartrate 0.2% to the beta-adrenergic antagonist timolol maleate 0.5% in preserving visual function in low-pressure glaucoma.
Randomized, double-masked, multicenter clinical trial.
Exclusion criteria included untreated intraocular pressure (IOP) >21 mm Hg, visual field mean deviation worse than -16 decibels, or contraindications to study medications. Both eyes received twice-daily monotherapy randomized in blocks of 7 (4 brimonidine to 3 timolol). Standard automated perimetry and tonometry were performed at 4-month intervals. Main outcome measure was field progression in either eye, defined as the same 3 or more points with a negative slope ≥-1 dB/year at P<5%, on 3 consecutive tests, assessed by pointwise linear regression. Secondary outcome measures were progression based on glaucoma change probability maps (GCPM) of pattern deviation and the 3-omitting method for pointwise linear regression.
Ninety-nine patients were randomized to brimonidine and 79 to timolol. Mean (± SE) months of follow-up for all patients was 30.0 ± 2. Statistically fewer brimonidine-treated patients (9, 9.1%) had visual field progression by pointwise linear regression than timolol-treated patients (31, 39.2%, log-rank 12.4, P=.001). Mean treated IOP was similar for brimonidine- and timolol-treated patients at all time points. More brimonidine-treated (28, 28.3%) than timolol-treated (9, 11.4%) patients discontinued study participation because of drug-related adverse events (P=.008). Similar differences in progression were observed when analyzed by GCPM and the 3-omitting method.
Low-pressure glaucoma patients treated with brimonidine 0.2% who do not develop ocular allergy are less likely to have field progression than patients treated with timolol 0.5%.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glaucoma is the second leading cause for blindness worldwide. It is mainly caused by glaucomatous optic neuropathy (GON) characterized by retinal ganglion cell loss, which leads to visual field defect and blindness. Up to now, the main purpose of antiglaucomatous therapies has been to lower intraocular pressure (IOP) through surgeries and medications. However, it has been found that progressive GON is still present in some patients with effective IOP decrease. Therefore, risk factors other than IOP elevation, like neurotrophin deprivation and excitotoxicity, contribute to progressive GON. Novel approaches of neuroprotection may be more effective for preserving the function of the optic nerve.
    Drug Design, Development and Therapy 9:1469-1479. DOI:10.2147/DDDT.S80594 · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Open-angle glaucoma is a multifactorial optic neuropathy characterized by progressive loss of retinal ganglion cells and their axons. It is an irreversible disease with no established cure. The only currently approved treatment is aimed at lowering intraocular pressure, the most significant risk factor known to date. However, it is now clear that there are other risk factors involved in glaucoma's pathophysiology. To achieve future improvements in glaucoma management, new approaches to therapies and novel targets must be developed. Such therapies may include new tissue targets for lowering intraocular pressure, molecules influencing ocular hemodynamics, and treatments providing neuroprotection of retinal ganglion cells. Furthermore, novel drug delivery systems are in development that may improve patient compliance, increase bioavailability, and decrease adverse side effects.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glaucoma is a group of diseases involving the optic nerve and associated structures, which is characterized by progressive visual field loss and typical changes of the optic nerve head (ONH). The only known treatment of the disease is reduction of intraocular pressure (IOP), which has been shown to reduce glaucoma progression in a variety of large-scale clinical trials. Nowadays, a relatively wide array of topical antiglaucoma drugs is available, including prostaglandin analogues, carbonic anhydrase inhibitors, beta-receptor antagonists, adrenergic agonists, and parasympathomimetics. In clinical routine, this allows for individualized treatment taking risk factors, efficacy, and safety into account. A major challenge is related to adherence to therapy. Sustained release devices may help minimize this problem but are not yet available for clinical routine use. Another hope arises from non-IOP-related treatment concepts. In recent years, much knowledge has been gained regarding the molecular mechanisms that underlie the disease process in glaucoma. This also strengthens the hope that glaucoma therapy beyond IOP lowering will become available. Implementing this concept with clinical trials remains, however, a challenge.
    Journal of Ocular Pharmacology and Therapeutics 01/2015; DOI:10.1089/jop.2014.0067 · 1.42 Impact Factor