Article

Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
Biomaterials (Impact Factor: 8.31). 04/2011; 32(10):2575-85. DOI: 10.1016/j.biomaterials.2010.12.049
Source: PubMed

ABSTRACT The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability.

0 Bookmarks
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The advent of nanoparticle DDSs (drug delivery systems, nano-DDSs) is opening new pathways to understanding physiology and pathophysiology at the nanometer scale. A nano-DDS can be used to deliver higher local concentrations of drugs to a target region and magnify therapeutic effects. However, interstitial cells in intractable tumors, as occurs in pancreatic or scirrhous stomach cancer, tend to impede nanoparticle delivery. Thus, it is critical to optimize the type and size of nanoparticles to reach the target. High-resolution 3D imaging provides a means of "seeing" the nanoparticle distribution and therapeutic effects. We introduce the concept of "nano-pathophysiological imaging" as a strategy for theranostics. The strategy consists of selecting an appropriate nano-DDS and rapidly evaluating drug effects in vivo to guide the next round of therapy. In this article we classify nano-DDSs by component carrier materials and present an overview of the significance of nano-pathophysiological MRI.
    Advanced drug delivery reviews 04/2014; · 11.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Theranostics have received enormous attentions for individualized diagnosis and treatment in the past few years. Especially, the availability of various nanoplatforms provides great potentials for designing of sophisticated theranostic agents including imaging, targeting and therapeutic functions. Numerous reports have been published on how to construct multifunctional nanoparticles for the targeted diagnosis and therapy simultaneously since the concept of "theranostics". This review presents recent advances of molecular imaging and nanoplatform technology, and their applications in drug discovery and development. Applications of nanoplatform-based theranostics in cancer and cardiovascular diseases will also be covered including diagnosis, assessment of drug biodistribution, and visualization of drug release from nanoparticles, as well as monitoring of therapeutic effects.
    Pharmaceutical Research 03/2014; · 4.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peptide dendrimers have shown promise as an attractive platform for drug delivery. In this study, mPEGylated peptide dendrimer–doxorubicin (dendrimer–DOX) conjugate-based nanoparticle is prepared and characterized as an enzyme-responsive drug delivery vehicle. The drug DOX is conjugated to the periphery of dendrimer via an enzyme-responsive tetra-peptide linker Gly-Phe-Leu-Gly (GFLG). The dendrimer–DOX conjugate can self-assemble into nanoparticle, which is confirmed by dynamic light scattering, scanning electron microscopy, and transmission electron microscopy studies. At equal dose, mPEGylated dendrimer–DOX conjugate-based nanoparticle results in significantly high antitumor activity, and induces apoptosis on the 4T1 breast tumor model due to the evidences from tumor growth curves, an immunohistochemical analysis, and a histological assessment. The in vivo toxicity evaluation demonstrates that nanoparticle substantially avoids DOX-related toxicities and presents good biosafety without obvious side effects to normal organs of both tumor-bearing and healthy mice as measured by body weight shift, blood routine test, and a histological analysis. Thus, the mPEGylated peptide dendrimer–DOX conjugate-based nanoparticle may be a potential nanoscale drug delivery vehicle for the breast cancer therapy.
    Advanced Healthcare Materials 04/2014;