MicroRNAs: Meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease.

University of Illinois, Department of Cell & Developmental Biology, Urbana, IL 61801, USA.
Pharmacology [?] Therapeutics (Impact Factor: 7.75). 04/2011; 130(1):26-37. DOI: 10.1016/j.pharmthera.2011.01.004
Source: PubMed

ABSTRACT MicroRNAs are members of the non-protein-coding family of RNAs. They serve as regulators of gene expression by modulating the translation and/or stability of messenger RNA targets. The discovery of microRNAs has revolutionized the field of cell biology, and has permanently altered the prevailing view of a linear relationship between gene and protein expression. The increased complexity of gene regulation is both exciting and daunting, as emerging evidence supports a pervasive role for microRNAs in virtually every cellular process. This review briefly describes microRNA processing and formation of RNA-induced silencing complexes, with a focus on the role of RNA binding proteins in this process. We also discuss mechanisms for microRNA-mediated regulation of translation, particularly in dendritic spine formation and function, and the role of microRNAs in synaptic plasticity. We then discuss the evidence for altered microRNA function in cognitive brain disorders, and the effect of gene mutations revealed by single nucleotide polymorphism analysis on altered microRNA function and human disease. Further, we present evidence that altered microRNA expression in circulating fluids such as plasma/serum can correlate with, and serve as, novel diagnostic biomarkers of human disease.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3′-untranscribed regions (3′-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3′-UTRs’ and RNA-binding proteins’ interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limk1 mRNA 3′-UTRs revealed the potential sites of yeast transcriptional termination. Computer modeling demonstrated the possibility of secondary structure formation in limk1 mRNA 3′-UTRs. For an evaluation of the functional activity of Drosophila 3′-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3′-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limk1 Gene 3′-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3′-UTR’s role in post-transcriptional regulation.
    Russian Journal of Genetics 06/2014; 50(6):569-576. DOI:10.1134/S102279541406009X · 0.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular microRNAs (miRNAs) have emerged as novel biomarkers (BMs) for various pathological states. To evaluate whether urinary miRNAs could serve as biomarkers for drug-induced kidney injury, we performed a nephrotoxicity study in rats with cisplatin (Cp) which is known to induce renal proximal tubular lesions in several species. Male Wistar rats were treated with a single dose of Cp (0, 1 and 3mg/kg) and urine was collected on days 3, 5, 8, 15 and 26 for measurement of several biomarkers and for RNA isolation. MiRNA profiling experiments with urine samples derived from the 3mg/kg Cp dosed animals, identified 136 miRNAs significantly increased in urine 3 and 5 days after Cp administration. 18 miRNAs with distinct time-dependent profiles were further analyzed using specific miRNA assays and absolute quantification. We observed >20-fold changes for 11 of these 18 miRNAs measured in profiling experiments, and confirmed their direction of change and time course profile by absolute quantification. Furthermore we found mechanistic links between several miRNAs and simultaneously measured mRNAs in the kidney after Cp administration. These were associated with pathways suggested to be involved in Cp-induced nephrotoxicity including a DNA damage response, apoptosis, and cell cycle regulation. Overall our results indicate that miRNAs measured in urine may serve as BMs for nephrotoxicity in rats.
    Toxicology 05/2014; DOI:10.1016/j.tox.2014.05.005 · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Local translation of mRNAs is a mechanism by which cells can rapidly remodel synaptic structure and function. There is ample evidence for a role of synaptic translation in the neuroadaptations resulting from chronic drug use and abuse. Persistent and coordinated changes of many mRNAs, globally and locally, may have a causal role in complex disorders such as addiction. In this review we examine the evidence that translational regulation by microRNAs drives synaptic remodeling and mRNA expression, which may regulate the transition from recreational to compulsive drug use. microRNAs are small, non-coding RNAs that control the translation of mRNAs in the cell and within spatially restricted sites such as the synapse. microRNAs typically repress the translation of mRNAs into protein by binding to the 3'UTR of their targets. As 'master regulators' of many mRNAs, changes in microRNAs could account for the systemic alterations in mRNA and protein expression observed with drug abuse and dependence. Recent studies indicate that manipulation of microRNAs affects addiction-related behaviors such as the rewarding properties of cocaine, cocaine-seeking behavior, and self-administration rates of alcohol. There is limited evidence, however, regarding how synaptic microRNAs control local mRNA translation during chronic drug exposure and how this contributes to the development of dependence. Here, we discuss research supporting microRNA regulation of local mRNA translation and how drugs of abuse may target this process. The ability of synaptic microRNAs to rapidly regulate mRNAs provides a discrete, localized system that could potentially be used as diagnostic and treatment tools for alcohol and other addiction disorders.
    Frontiers in Molecular Neuroscience 12/2014; 7:85. DOI:10.3389/fnmol.2014.00085

Full-text (2 Sources)

Available from
Jul 10, 2014